Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
Add more filters










Publication year range
1.
Genome Biol ; 22(1): 282, 2021 10 04.
Article in English | MEDLINE | ID: mdl-34607603

ABSTRACT

BACKGROUND: Zebrafish pigment cell differentiation provides an attractive model for studying cell fate progression as a neural crest progenitor engenders diverse cell types, including two morphologically distinct pigment cells: black melanophores and reflective iridophores. Nontrivial classical genetic and transcriptomic approaches have revealed essential molecular mechanisms and gene regulatory circuits that drive neural crest-derived cell fate decisions. However, how the epigenetic landscape contributes to pigment cell differentiation, especially in the context of iridophore cell fate, is poorly understood. RESULTS: We chart the global changes in the epigenetic landscape, including DNA methylation and chromatin accessibility, during neural crest differentiation into melanophores and iridophores to identify epigenetic determinants shaping cell type-specific gene expression. Motif enrichment in the epigenetically dynamic regions reveals putative transcription factors that might be responsible for driving pigment cell identity. Through this effort, in the relatively uncharacterized iridophores, we validate alx4a as a necessary and sufficient transcription factor for iridophore differentiation and present evidence on alx4a's potential regulatory role in guanine synthesis pathway. CONCLUSIONS: Pigment cell fate is marked by substantial DNA demethylation events coupled with dynamic chromatin accessibility to potentiate gene regulation through cis-regulatory control. Here, we provide a multi-omic resource for neural crest differentiation into melanophores and iridophores. This work led to the discovery and validation of iridophore-specific alx4a transcription factor.


Subject(s)
Cell Differentiation/genetics , Chromatophores/metabolism , Epigenesis, Genetic , Melanophores/metabolism , Zebrafish/genetics , Animals , Chromatin/metabolism , CpG Islands , DNA Methylation , Gene Regulatory Networks , Neural Crest/cytology , Neural Crest/metabolism , Regulatory Sequences, Nucleic Acid , Transcription Factors/metabolism , Transcription Factors/physiology , Transcription, Genetic , Zebrafish/metabolism , Zebrafish Proteins/metabolism , Zebrafish Proteins/physiology
2.
Curr Biol ; 31(22): 5052-5061.e8, 2021 11 22.
Article in English | MEDLINE | ID: mdl-34534441

ABSTRACT

Changes to allometry, or the relative proportions of organs and tissues within organisms, is a common means for adaptive character change in evolution. However, little is understood about how relative size is specified during development and shaped during evolution. Here, through a phylogenomic analysis of genome-wide variation in 35 species of flying fishes and relatives, we identify genetic signatures in both coding and regulatory regions underlying the convergent evolution of increased paired fin size and aerial gliding behaviors. To refine our analysis, we intersected convergent phylogenomic signatures with mutants with altered fin size identified in distantly related zebrafish. Through these paired approaches, we identify a surprising role for an L-type amino acid transporter, lat4a, and the potassium channel, kcnh2a, in the regulation of fin proportion. We show that interaction between these genetic loci in zebrafish closely phenocopies the observed fin proportions of flying fishes. The congruence of experimental and phylogenomic findings point to conserved, non-canonical signaling integrating bioelectric cues and amino acid transport in the establishment of relative size in development and evolution.


Subject(s)
Animal Fins , Zebrafish , Animal Fins/physiology , Animals , Biological Evolution , Cues , Evolution, Molecular , Fishes/genetics , Phylogeny , Zebrafish Proteins/metabolism
3.
Cell Metab ; 33(7): 1493-1504.e5, 2021 07 06.
Article in English | MEDLINE | ID: mdl-33989520

ABSTRACT

The cell-intrinsic nature of tumor metabolism has become increasingly well characterized. The impact that tumors have on systemic metabolism, however, has received less attention. Here, we used adult zebrafish harboring BRAFV600E-driven melanoma to study the effect of cancer on distant tissues. By applying metabolomics and isotope tracing, we found that melanoma consume ~15 times more glucose than other tissues measured. Despite this burden, circulating glucose levels were maintained in disease animals by a tumor-liver alanine cycle. Excretion of glucose-derived alanine from tumors provided a source of carbon for hepatic gluconeogenesis and allowed tumors to remove excess nitrogen from branched-chain amino acid catabolism, which we found to be activated in zebrafish and human melanoma. Pharmacological inhibition of the tumor-liver alanine cycle in zebrafish reduced tumor burden. Our findings underscore the significance of metabolic crosstalk between tumors and distant tissues and establish the adult zebrafish as an attractive model to study such processes.


Subject(s)
Alanine/metabolism , Liver/metabolism , Melanoma/metabolism , Aging/pathology , Animals , Animals, Genetically Modified , Cell Tracking/methods , Disease Models, Animal , Gluconeogenesis/genetics , Humans , Isotope Labeling/methods , Liver/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Melanoma/genetics , Melanoma/pathology , Metabolomics , Zebrafish
5.
Sci Adv ; 6(33): eaba2084, 2020 08.
Article in English | MEDLINE | ID: mdl-32851162

ABSTRACT

Zebrafish faithfully regenerate their caudal fin after amputation. During this process, both differentiated cells and resident progenitors migrate to the wound site and undergo lineage-restricted, programmed cellular state transitions to populate the new regenerate. Until now, systematic characterizations of cells comprising the new regenerate and molecular definitions of their state transitions have been lacking. We hereby characterize the dynamics of gene regulatory programs during fin regeneration by creating single-cell transcriptome maps of both preinjury and regenerating fin tissues at 1/2/4 days post-amputation. We consistently identified epithelial, mesenchymal, and hematopoietic populations across all stages. We found common and cell type-specific cell cycle programs associated with proliferation. In addition to defining the processes of epithelial replenishment and mesenchymal differentiation, we also identified molecular signatures that could better distinguish epithelial and mesenchymal subpopulations in fish. The insights for natural cell state transitions during regeneration point to new directions for studying this regeneration model.


Subject(s)
Animal Fins , Zebrafish , Animals , Cell Differentiation , Regeneration/genetics , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/metabolism
6.
Genome Biol ; 21(1): 52, 2020 02 27.
Article in English | MEDLINE | ID: mdl-32106888

ABSTRACT

BACKGROUND: Zebrafish can faithfully regenerate injured fins through the formation of a blastema, a mass of proliferative cells that can grow and develop into the lost body part. After amputation, various cell types contribute to blastema formation, where each cell type retains fate restriction and exclusively contributes to regeneration of its own lineage. Epigenetic changes that are associated with lineage restriction during regeneration remain underexplored. RESULTS: We produce epigenome maps, including DNA methylation and chromatin accessibility, as well as transcriptomes, of osteoblasts and other cells in uninjured and regenerating fins. This effort reveals regeneration as a process of highly dynamic and orchestrated transcriptomic and chromatin accessibility changes, coupled with stably maintained lineage-specific DNA methylation. The epigenetic signatures also reveal many novel regeneration-specific enhancers, which are experimentally validated. Regulatory networks important for regeneration are constructed through integrative analysis of the epigenome map, and a knockout of a predicted upstream regulator disrupts normal regeneration, validating our prediction. CONCLUSION: Our study shows that lineage-specific DNA methylation signatures are stably maintained during regeneration, and regeneration enhancers are preset as hypomethylated before injury. In contrast, chromatin accessibility is dynamically changed during regeneration. Many enhancers driving regeneration gene expression as well as upstream regulators of regeneration are identified and validated through integrative epigenome analysis.


Subject(s)
Animal Fins/metabolism , Cell Lineage , DNA Methylation , Epigenome , Regeneration , Animal Fins/cytology , Animal Fins/physiology , Animals , Chromatin Assembly and Disassembly , Gene Regulatory Networks , Osteoblasts/cytology , Osteoblasts/metabolism , Zebrafish
7.
Pigment Cell Melanoma Res ; 33(3): 416-425, 2020 05.
Article in English | MEDLINE | ID: mdl-31642595

ABSTRACT

Tissue regeneration and homeostasis often require recruitment of undifferentiated precursors (adult stem cells; ASCs). While many ASCs continuously proliferate throughout the lifetime of an organism, others are recruited from a quiescent state to replenish their target tissue. A long-standing question in stem cell biology concerns how long-lived, non-dividing ASCs regulate the transition between quiescence and proliferation. We study the melanocyte stem cell (MSC) to investigate the molecular pathways that regulate ASC quiescence. Our prior work indicated that GABA-A receptor activation promotes MSC quiescence in larval zebrafish. Here, through pharmacological and genetic approaches we show that GABA-A acts through calcium signaling to maintain MSC quiescence. Unexpectedly, we identified translocator protein (TSPO), a mitochondrial membrane-associated protein that regulates mitochondrial function and metabolic homeostasis, as a parallel regulator of MSC quiescence. We found that both TSPO-specific ligands and induction of gluconeogenesis likely act in the same pathway to promote MSC activation and melanocyte production in larval zebrafish. In contrast, TSPO and gluconeogenesis appear to act in parallel to GABA-A receptor signaling to regulate MSC quiescence and vertebrate pigment patterning.


Subject(s)
Cell Cycle , Melanocytes/cytology , Mitochondria/metabolism , Receptors, GABA-A/metabolism , Receptors, GABA/metabolism , Signal Transduction , Stem Cells/cytology , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Animals , Calcium/metabolism , Calcium Signaling/drug effects , Cell Cycle/drug effects , GABA-A Receptor Antagonists/pharmacology , Gluconeogenesis/drug effects , Larva/drug effects , Ligands , Melanocytes/drug effects , Mitochondria/drug effects , Signal Transduction/drug effects , Stem Cells/drug effects , Stem Cells/metabolism
8.
Genetics ; 213(2): 555-566, 2019 10.
Article in English | MEDLINE | ID: mdl-31444245

ABSTRACT

In larval zebrafish, melanocyte stem cells (MSCs) are quiescent, but can be recruited to regenerate the larval pigment pattern following melanocyte ablation. Through pharmacological experiments, we found that inhibition of γ-aminobutyric acid (GABA)-A receptor function, specifically the GABA-A ρ subtype, induces excessive melanocyte production in larval zebrafish. Conversely, pharmacological activation of GABA-A inhibited melanocyte regeneration. We used clustered regularly interspaced short palindromic repeats/Cas9 to generate two mutant alleles of gabrr1, a subtype of GABA-A receptors. Both alleles exhibited robust melanocyte overproduction, while conditional overexpression of gabrr1 inhibited larval melanocyte regeneration. Our data suggest that gabrr1 signaling is necessary to maintain MSC quiescence and sufficient to reduce, but not eliminate, melanocyte regeneration in larval zebrafish.


Subject(s)
Melanocytes/metabolism , Receptors, GABA-A/genetics , Zebrafish Proteins/genetics , Zebrafish/genetics , Animals , Cell Differentiation/genetics , Cell Division/genetics , Larva/genetics , Larva/growth & development , Pigmentation/genetics , Regeneration/genetics , Signal Transduction/genetics , Stem Cells/metabolism , Zebrafish/growth & development , gamma-Aminobutyric Acid/genetics
9.
J Proteome Res ; 17(10): 3537-3546, 2018 10 05.
Article in English | MEDLINE | ID: mdl-30160483

ABSTRACT

Existing hydrophilic interaction liquid chromatography (HILIC) methods, considered individually, each exhibit poor chromatographic performance for a substantial fraction of polar metabolites. In addition to limiting metabolome coverage, such deficiencies also complicate automated data processing. Here we show that some of these analytical challenges can be addressed for the ZIC-pHILIC, a zwitterionic stationary phase commonly used in metabolomics, with the addition of trace levels of phosphate. Specifically, micromolar phosphate extended metabolome coverage by hundreds of credentialed features, improved peak shapes, and reduced peak-detection errors during informatic processing. Although the addition of high levels of phosphate (millimolar) as a HILIC mobile phase buffer has been explored previously, such concentrations interfere with mass spectrometric (MS) detection. We show that using phosphate as a trace additive at micromolar concentrations improves analysis by electrospray MS, increasing signal for a diverse set of polar standards. Given the small amount of phosphate needed, comparable chromatographic improvements were also achieved by direct addition of phosphate to the sample during reconstitution. Our results suggest that defects in ZIC-pHILIC performance are predominantly driven by electrostatic interactions, which can be modulated by phosphate. These findings constitute both a methodological improvement for untargeted metabolomics and an advance in our understanding of the mechanisms limiting HILIC coverage.


Subject(s)
Chromatography, Liquid/methods , Mass Spectrometry/methods , Metabolome , Metabolomics/methods , Phosphates/metabolism , Hydrophobic and Hydrophilic Interactions , Reproducibility of Results , Static Electricity
10.
Sci Rep ; 8(1): 10391, 2018 Jul 10.
Article in English | MEDLINE | ID: mdl-29991812

ABSTRACT

The establishment of relative size of organs and structures is paramount for attaining final form and function of an organism. Importantly, variation in the proportions of structures frequently underlies adaptive change in morphology in evolution and maybe a common mechanism underlying selection. However, the mechanism by which growth is integrated within tissues during development to achieve proper proportionality is poorly understood. We have shown that signaling by potassium channels mediates coordinated size regulation in zebrafish fins. Recently, calcineurin inhibitors were shown to elicit changes in zebrafish fin allometry as well. Here, we identify the potassium channel kcnk5b as a key player in integrating calcineurin's growth effects, in part through regulation of the cytoplasmic C-terminus of the channel. We propose that the interaction between Kcnk5b and calcineurin acts as a signaling node to regulate allometric growth. Importantly, we find that this regulation is epistatic to inherent mechanisms instructing overall size as inhibition of calcineurin is able to bypass genetic instruction of size as seen in sof and wild-type fins, however, it is not sufficient to re-specify positional memory of size of the fin. These findings integrate classic signaling mediators such as calcineurin with ion channel function in the regulation of size and proportion during growth.


Subject(s)
Animal Fins/growth & development , Calcineurin/genetics , Potassium Channels, Tandem Pore Domain/genetics , Zebrafish Proteins/genetics , Zebrafish/genetics , Animal Fins/anatomy & histology , Animals , Body Patterning/genetics , Calcineurin/metabolism , Calcineurin Inhibitors/pharmacology , Gene Expression Regulation, Developmental/genetics , Regeneration/genetics , Signal Transduction/genetics , Zebrafish/growth & development
11.
Anal Bioanal Chem ; 410(4): 1287-1297, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29256075

ABSTRACT

Although it is common in untargeted metabolomics to apply reversed-phase liquid chromatography (RPLC) and hydrophilic interaction liquid chromatography (HILIC) methods that have been systematically optimized for lipids and central carbon metabolites, here we show that these established protocols provide poor coverage of semipolar metabolites because of inadequate retention. Our objective was to develop an RPLC approach that improved detection of these metabolites without sacrificing lipid coverage. We initially evaluated columns recently released by Waters under the CORTECS line by analyzing 47 small-molecule standards that evenly span the nonpolar and semipolar ranges. An RPLC method commonly used in untargeted metabolomics was considered a benchmarking reference. We found that highly nonpolar and semipolar metabolites cannot be reliably profiled with any single method because of retention and solubility limitations of the injection solvent. Instead, we optimized a multiplexed approach using the CORTECS T3 column to analyze semipolar compounds and the CORTECS C8 column to analyze lipids. Strikingly, we determined that combining these methods allowed detection of 41 of the total 47 standards, whereas our reference RPLC method detected only 10 of the 47 standards. We then applied credentialing to compare method performance at the comprehensive scale. The tandem method showed more than a fivefold increase in credentialing coverage relative to our RPLC benchmark. Our results demonstrate that comprehensive coverage of metabolites amenable to reversed-phase separation necessitates two reconstitution solvents and chromatographic methods. Thus, we suggest complementing HILIC methods with a dual T3 and C8 RPLC approach to increase coverage of semipolar metabolites and lipids for untargeted metabolomics. Graphical abstract Analysis of semipolar and nonpolar metabolites necessitates two reversed-phase chromatography (RPLC) methods, which extend metabolome coverage more than fivefold for untargeted profiling. HILIC hydrophilic interaction liquid chromatography.


Subject(s)
Chromatography, Reverse-Phase/methods , Metabolome , Escherichia coli/metabolism , Hydrophobic and Hydrophilic Interactions , Mass Spectrometry , Reference Standards , Solubility
12.
Proc Natl Acad Sci U S A ; 114(43): E9153-E9162, 2017 10 24.
Article in English | MEDLINE | ID: mdl-29073112

ABSTRACT

Oligodendrocytes in the central nervous system produce myelin, a lipid-rich, multilamellar sheath that surrounds axons and promotes the rapid propagation of action potentials. A critical component of myelin is myelin basic protein (MBP), expression of which requires anterograde mRNA transport followed by local translation at the developing myelin sheath. Although the anterograde motor kinesin KIF1B is involved in mbp mRNA transport in zebrafish, it is not entirely clear how mbp transport is regulated. From a forward genetic screen for myelination defects in zebrafish, we identified a mutation in actr10, which encodes the Arp11 subunit of dynactin, a critical activator of the retrograde motor dynein. Both the actr10 mutation and pharmacological dynein inhibition in zebrafish result in failure to properly distribute mbp mRNA in oligodendrocytes, indicating a paradoxical role for the retrograde dynein/dynactin complex in anterograde mbp mRNA transport. To address the molecular mechanism underlying this observation, we biochemically isolated reporter-tagged Mbp mRNA granules from primary cultured mammalian oligodendrocytes to show that they indeed associate with the retrograde motor complex. Next, we used live-cell imaging to show that acute pharmacological dynein inhibition quickly arrests Mbp mRNA transport in both directions. Chronic pharmacological dynein inhibition also abrogates Mbp mRNA distribution and dramatically decreases MBP protein levels. Thus, these cell culture and whole animal studies demonstrate a role for the retrograde dynein/dynactin motor complex in anterograde mbp mRNA transport and myelination in vivo.


Subject(s)
Dynactin Complex/metabolism , Dyneins/metabolism , Myelin Basic Protein/genetics , Oligodendroglia/metabolism , RNA, Messenger/metabolism , Animals , Animals, Genetically Modified , Axons/pathology , Biological Transport , Cell Proliferation/genetics , Cells, Cultured , Dynactin Complex/genetics , Dyneins/genetics , Larva , Microfilament Proteins/genetics , Oligodendroglia/pathology , Rats, Sprague-Dawley , Zebrafish/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
13.
G3 (Bethesda) ; 7(10): 3415-3425, 2017 10 05.
Article in English | MEDLINE | ID: mdl-28855284

ABSTRACT

As forward genetic screens in zebrafish become more common, the number of mutants that cannot be identified by gross morphology or through transgenic approaches, such as many nervous system defects, has also increased. Screening for these difficult-to-visualize phenotypes demands techniques such as whole-mount in situ hybridization (WISH) or antibody staining, which require tissue fixation. To date, fixed tissue has not been amenable for generating libraries for whole genome sequencing (WGS). Here, we describe a method for using genomic DNA from fixed tissue and a bioinformatics suite for WGS-based mapping of zebrafish mutants. We tested our protocol using two known zebrafish mutant alleles, gpr126st49 and egr2bfh227 , both of which cause myelin defects. As further proof of concept we mapped a novel mutation, stl64, identified in a zebrafish WISH screen for myelination defects. We linked stl64 to chromosome 1 and identified a candidate nonsense mutation in the F-box and WD repeat domain containing 7 (fbxw7) gene. Importantly, stl64 mutants phenocopy previously described fbxw7vu56 mutants, and knockdown of fbxw7 in wild-type animals produced similar defects, demonstrating that stl64 disrupts fbxw7 Together, these data show that our mapping protocol can map and identify causative lesions in mutant screens that require tissue fixation for phenotypic analysis.


Subject(s)
Whole Genome Sequencing/methods , Zebrafish/genetics , Animals , Chromosome Mapping , Mutation , Polymorphism, Single Nucleotide , Tissue Fixation
14.
Dev Dyn ; 246(9): 691-699, 2017 09.
Article in English | MEDLINE | ID: mdl-28577298

ABSTRACT

BACKGROUND: How joints are correctly positioned in the vertebrate skeleton remains poorly understood. From our studies on the regenerating fin, we have evidence that the gap junction protein Cx43 suppresses joint formation by suppressing the expression of the evx1 transcription factor. Joint morphogenesis proceeds through at least two discrete stages. First, cells that will produce the joint condense in a single row on the bone matrix ("initiation"). Second, these cells separate coincident with articulation of the bone matrix. We propose that Cx43 activity is transiently reduced prior to joint initiation. RESULTS: We first define the timing of joint initiation with respect to regeneration. We next correlate reduced cx43 expression and increased evx1 expression with initiation. Through manipulation of cx43 expression, we demonstrate that Cx43 negatively influences evx1 expression and joint formation. We further demonstrate that Cx43 activity in the dermal fibroblasts is required to rescue joint formation in the cx43 mutant, short finb123 . CONCLUSIONS: We conclude that Cx43 activity in the dermal fibroblasts influences the expression of evx1, and therefore the differentiation of the precursor cells that give rise to the joint-forming osteoblasts. Developmental Dynamics 246:691-699, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Connexin 43/metabolism , Homeodomain Proteins/metabolism , Zebrafish Proteins/metabolism , Animal Fins/embryology , Animal Fins/metabolism , Animals , Connexin 43/genetics , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Developmental/genetics , Homeodomain Proteins/genetics , In Situ Hybridization , Morphogenesis/genetics , Morphogenesis/physiology , Tacrolimus/pharmacology , Zebrafish , Zebrafish Proteins/genetics
15.
Zebrafish ; 14(3): 280-283, 2017 06.
Article in English | MEDLINE | ID: mdl-28287927

ABSTRACT

Research into adult zebrafish often requires fish to be of a specific size. Currently, fish must be individually measured to achieve this goal. Here, we design and utilize fish graders to quickly sort fish by width. We characterize graders individually for the length of fish they discriminate between and we also analyze graders in pairs to define the range of lengths for a retained population of fish. We note that a 1 mm increase of fish width increases fish length by 6.2-7.2 mm. We provide the schematics to print a series of eight retention widths, and note that graders of any desired retention width can easily be printed by slightly modifying our design files.


Subject(s)
Body Size , Printing, Three-Dimensional/instrumentation , Zebrafish/anatomy & histology , Animals , Equipment Design , Robotics/instrumentation , Species Specificity , Zebrafish/physiology
16.
Nat Chem Biol ; 12(11): 937-943, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27618187

ABSTRACT

It is well established that lactate secreted by fermenting cells can be oxidized or used as a gluconeogenic substrate by other cells and tissues. It is generally assumed, however, that within the fermenting cell itself, lactate is produced to replenish NAD+ and then is secreted. Here we explore the possibility that cytosolic lactate is metabolized by the mitochondria of fermenting mammalian cells. We found that fermenting HeLa and H460 cells utilize exogenous lactate carbon to synthesize a large percentage of their lipids. Using high-resolution mass spectrometry, we found that both 13C and 2-2H labels from enriched lactate enter the mitochondria. The lactate dehydrogenase (LDH) inhibitor oxamate decreased respiration of isolated mitochondria incubated in lactate, but not of isolated mitochondria incubated in pyruvate. Additionally, transmission electron microscopy (TEM) showed that LDHB localizes to the mitochondria. Taken together, our results demonstrate a link between lactate metabolism and the mitochondria of fermenting mammalian cells.


Subject(s)
Lactic Acid/metabolism , Mitochondria/metabolism , Cell Line, Tumor , HeLa Cells , Humans , Molecular Structure
17.
Cell Chem Biol ; 23(4): 483-93, 2016 04 21.
Article in English | MEDLINE | ID: mdl-27049668

ABSTRACT

Cellular proliferation requires the formation of new membranes. It is often assumed that the lipids needed for these membranes are synthesized mostly de novo. Here, we show that proliferating fibroblasts prefer to take up palmitate from the extracellular environment over synthesizing it de novo. Relative to quiescent fibroblasts, proliferating fibroblasts increase their uptake of palmitate, decrease fatty acid degradation, and instead direct more palmitate to membrane lipids. When exogenous palmitate is provided in the culture media at physiological concentrations, de novo synthesis accounts for only a minor fraction of intracellular palmitate in proliferating fibroblasts as well as proliferating HeLa and H460 cells. Blocking fatty acid uptake decreased the proliferation rate of fibroblasts, HeLa, and H460 cells, while supplementing media with exogenous palmitate resulted in decreased glucose uptake and rendered cells less sensitive to glycolytic inhibition. Our results suggest that cells scavenging exogenous lipids may be less susceptible to drugs targeting glycolysis and de novo lipid synthesis.


Subject(s)
Fatty Acids/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Membrane Lipids/metabolism , 3T3-L1 Cells , Animals , Cell Line, Tumor , Cell Proliferation , HeLa Cells , Humans , Mice
18.
Anal Chem ; 88(5): 2538-42, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26837423

ABSTRACT

Metabolite identifications are most frequently achieved in untargeted metabolomics by matching precursor mass and full, high-resolution MS(2) spectra to metabolite databases and standards. Here we considered an alternative approach for establishing metabolite identifications that does not rely on full, high-resolution MS(2) spectra. First, we select mass-to-charge regions containing the most informative metabolite fragments and designate them as bins. We then translate each metabolite fragmentation pattern into a binary code by assigning 1's to bins containing fragments and 0's to bins without fragments. With 20 bins, this binary-code system is capable of distinguishing 96% of the compounds in the METLIN MS(2) library. A major advantage of the approach is that it extends untargeted metabolomics to low-resolution triple quadrupole (QqQ) instruments, which are typically less expensive and more robust than other types of mass spectrometers. We demonstrate a method of acquiring MS(2) data in which the third quadrupole of a QqQ instrument cycles over 20 wide isolation windows (coinciding with the location and width of our bins) for each precursor mass selected by the first quadrupole. Operating the QqQ instrument in this mode yields diagnostic bar codes for each precursor mass that can be matched to the bar codes of metabolite standards. Furthermore, our data suggest that using low-resolution bar codes enables QqQ instruments to make MS(2)-based identifications in untargeted metabolomics with a specificity and sensitivity that is competitive to high-resolution time-of-flight technologies.


Subject(s)
Electronic Data Processing/methods , Metabolome , Metabolomics/methods , Limit of Detection , Mass Spectrometry
19.
Dev Biol ; 409(2): 473-88, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26586201

ABSTRACT

Hirschsprung Disease (HSCR) is a potentially deadly birth defect characterized by the absence of the enteric nervous system (ENS) in distal bowel. Although HSCR has clear genetic causes, no HSCR-associated mutation is 100% penetrant, suggesting gene-gene and gene-environment interactions determine HSCR occurrence. To test the hypothesis that certain medicines might alter HSCR risk we treated zebrafish with medications commonly used during early human pregnancy and discovered that ibuprofen caused HSCR-like absence of enteric neurons in distal bowel. Using fetal CF-1 mouse gut slice cultures, we found that ibuprofen treated enteric neural crest-derived cells (ENCDC) had reduced migration, fewer lamellipodia and lower levels of active RAC1/CDC42. Additionally, inhibiting ROCK, a RHOA effector and known RAC1 antagonist, reversed ibuprofen effects on migrating mouse ENCDC in culture. Ibuprofen also inhibited colonization of Ret+/- mouse bowel by ENCDC in vivo and dramatically reduced bowel colonization by chick ENCDC in culture. Interestingly, ibuprofen did not affect ENCDC migration until after at least three hours of exposure. Furthermore, mice deficient in Ptgs1 (COX 1) and Ptgs2 (COX 2) had normal bowel colonization by ENCDC and normal ENCDC migration in vitro suggesting COX-independent effects. Consistent with selective and strain specific effects on ENCDC, ibuprofen did not affect migration of gut mesenchymal cells, NIH3T3, or WT C57BL/6 ENCDC, and did not affect dorsal root ganglion cell precursor migration in zebrafish. Thus, ibuprofen inhibits ENCDC migration in vitro and bowel colonization by ENCDC in vivo in zebrafish, mouse and chick, but there are cell type and strain specific responses. These data raise concern that ibuprofen may increase Hirschsprung disease risk in some genetically susceptible children.


Subject(s)
Cell Movement/drug effects , Enteric Nervous System/cytology , Ibuprofen/pharmacology , Intestines/cytology , Neural Stem Cells/cytology , Actin Cytoskeleton/metabolism , Animals , Caspase 3/metabolism , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Chickens , Cyclooxygenase 1/deficiency , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/deficiency , Cyclooxygenase 2/metabolism , Enzyme Activation/drug effects , Membrane Proteins/deficiency , Membrane Proteins/metabolism , Mesoderm/cytology , Mice , Models, Biological , NIH 3T3 Cells , Neural Stem Cells/drug effects , Neurons/cytology , Neurons/drug effects , Organ Culture Techniques , PPAR gamma/metabolism , Pseudopodia/drug effects , Pseudopodia/metabolism , Zebrafish , rac1 GTP-Binding Protein/metabolism , rho-Associated Kinases/antagonists & inhibitors , rho-Associated Kinases/metabolism
20.
Curr Biol ; 25(23): 3048-57, 2015 Dec 07.
Article in English | MEDLINE | ID: mdl-26549260

ABSTRACT

Some vertebrate species have evolved means of extending their visual sensitivity beyond the range of human vision. One mechanism of enhancing sensitivity to long-wavelength light is to replace the 11-cis retinal chromophore in photopigments with 11-cis 3,4-didehydroretinal. Despite over a century of research on this topic, the enzymatic basis of this perceptual switch remains unknown. Here, we show that a cytochrome P450 family member, Cyp27c1, mediates this switch by converting vitamin A1 (the precursor of 11-cis retinal) into vitamin A2 (the precursor of 11-cis 3,4-didehydroretinal). Knockout of cyp27c1 in zebrafish abrogates production of vitamin A2, eliminating the animal's ability to red-shift its photoreceptor spectral sensitivity and reducing its ability to see and respond to near-infrared light. Thus, the expression of a single enzyme mediates dynamic spectral tuning of the entire visual system by controlling the balance of vitamin A1 and A2 in the eye.


Subject(s)
Amphibian Proteins/genetics , Cytochrome P-450 Enzyme System/genetics , Rana catesbeiana/physiology , Vitamin A/analogs & derivatives , Vitamin A/metabolism , Zebrafish Proteins/genetics , Zebrafish/physiology , Amphibian Proteins/metabolism , Animals , Cytochrome P-450 Enzyme System/metabolism , Infrared Rays , Photoreceptor Cells, Vertebrate/physiology , Rana catesbeiana/genetics , Transcriptome , Visual Perception , Zebrafish/genetics , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...