Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Children (Basel) ; 10(3)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36980028

ABSTRACT

Ponte osteotomy is an increasingly popular technique for multiplanar correction of adolescent idiopathic scoliosis. Prior cadaveric studies have suggested that sequential posterior spinal releases increase spinal flexibility. Here we introduce a novel technique involving a sequential approach to the Ponte osteotomy that minimizes spinal canal exposure. One fresh-frozen adult human cadaveric thoracic spine specimen with 4 cm of ribs was divided into three sections (T1-T5, T6-T9, T10-L1) and mounted for biomechanical testing. Each segment was loaded with five Newton meters under four conditions: baseline inferior facetectomy with supra/interspinous ligament release, superior articular process (SAP) osteotomy in situ, spinous process (SP) osteotomy in situ, and complete posterior column osteotomy with SP/SAP excision and ligamentum flavum release (PCO). Compared to baseline, in situ SAP osteotomy alone provided 3.5%, 7.6%, and 7.2% increase in flexion/extension, lateral bending, and axial rotation, respectively. In situ SP osteotomy increased flexion/extension, lateral bending, and axial rotation by 15%, 18%, and 10.3%, respectively. PCO increased flexion/extension, lateral bending, and axial rotation by 19.6%, 28.3%, and 12.2%, respectively. Our report introduces a novel approach where incremental increases in range of motion can be achieved with minimal spinal canal exposure and demonstrates feasibility in a cadaveric model.

SELECTION OF CITATIONS
SEARCH DETAIL