Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Cardiovasc Transl Res ; 16(4): 874-885, 2023 08.
Article in English | MEDLINE | ID: mdl-36602668

ABSTRACT

Fast-growing abdominal aortic aneurysms (AAA) have a high rupture risk and poor outcomes if not promptly identified and treated. Our primary objective is to improve the differentiation of small AAAs' growth status (fast versus slow-growing) through a combination of patient health information, computational hemodynamics, geometric analysis, and artificial intelligence. 3D computed tomography angiography (CTA) data available for 70 patients diagnosed with AAAs with known growth status were used to conduct geometric and hemodynamic analyses. Differences among ten metrics (out of ninety metrics) were statistically significant discriminators between fast and slow-growing groups. Using a support vector machine (SVM) classifier, the area under receiving operating curve (AUROC) and total accuracy of our best predictive model for differentiation of AAAs' growth status were 0.86 and 77.50%, respectively. In summary, the proposed analytics has the potential to differentiate fast from slow-growing AAAs, helping guide resource allocation for the management of patients with AAAs.


Subject(s)
Aortic Aneurysm, Abdominal , Aortic Rupture , Humans , Feasibility Studies , Artificial Intelligence , Aortic Aneurysm, Abdominal/diagnostic imaging , Tomography, X-Ray Computed , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...