Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
J Clin Invest ; 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39316441

ABSTRACT

BACKGROUND: Most genome wide association studies (GWAS) of plasma proteomics have focused on White individuals of European ancestry, limiting biological insight from other ancestry enriched protein quantitative loci (pQTL). METHODS: We conducted a discovery GWAS of ~3,000 plasma proteins measured by the antibody based Olink platform in 1,054 Black adults from the Jackson Heart Study (JHS), and validated our findings in the Multi-Ethnic Study of Atherosclerosis (MESA). The genetic architecture of identified pQTLs were further explored through fine mapping and admixture association analysis. Finally, using our pQTL findings, we performed a phenome wide association study (PheWAS) across two large multi-ethnic electronic health record (EHR) systems in All of Us and BioMe. RESULTS: We identified 1002 pQTLs for 925 proteins. Fine mapping and admixture analyses suggested allelic heterogeneity of the plasma proteome across diverse populations. We identified associations for variants enriched in African ancestry, many in diseases that lack precise biomarkers, including cis-pQTLs for Cathepsin L (CTSL) and Siglec-9 that were linked with sarcoidosis and non-Hodgkin's lymphoma, respectively. We found concordant associations across clinical diagnoses and laboratory measurements, elucidating disease pathways, including a cis-pQTL associated with circulating CD58, white blood cell count, and multiple sclerosis. CONCLUSIONS: Our findings emphasize the value of leveraging diverse populations to enhance biological insights from proteomics GWAS, and we have made this resource readily available as an interactive web portal.

2.
Diabetologia ; 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39349773

ABSTRACT

AIMS/HYPOTHESIS: Several studies have reported associations between specific proteins and type 2 diabetes risk in European populations. To better understand the role played by proteins in type 2 diabetes aetiology across diverse populations, we conducted a large proteome-wide association study using genetic instruments across four racial and ethnic groups: African; Asian; Hispanic/Latino; and European. METHODS: Genome and plasma proteome data from the Multi-Ethnic Study of Atherosclerosis (MESA) study involving 182 African, 69 Asian, 284 Hispanic/Latino and 409 European individuals residing in the USA were used to establish protein prediction models by using potentially associated cis- and trans-SNPs. The models were applied to genome-wide association study summary statistics of 250,127 type 2 diabetes cases and 1,222,941 controls from different racial and ethnic populations. RESULTS: We identified three, 44 and one protein associated with type 2 diabetes risk in Asian, European and Hispanic/Latino populations, respectively. Meta-analysis identified 40 proteins associated with type 2 diabetes risk across the populations, including well-established as well as novel proteins not yet implicated in type 2 diabetes development. CONCLUSIONS/INTERPRETATION: Our study improves our understanding of the aetiology of type 2 diabetes in diverse populations. DATA AVAILABILITY: The summary statistics of multi-ethnic type 2 diabetes GWAS of MVP, DIAMANTE, Biobank Japan and other studies are available from The database of Genotypes and Phenotypes (dbGaP) under accession number phs001672.v3.p1. MESA genetic, proteome and covariate data can be accessed through dbGaP under phs000209.v13.p3. All code is available on GitHub ( https://github.com/Arthur1021/MESA-1K-PWAS ).

3.
J Am Heart Assoc ; 13(19): e035693, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39344648

ABSTRACT

BACKGROUND: Inflammation is a feature of coronary heart disease (CHD), but the role of proinflammatory microbial infection in CHD remains understudied. METHODS AND RESULTS: CHD was defined in the MESA (Multi-Ethnic Study of Atherosclerosis) as myocardial infarction (251 participants), resuscitated arrest (2 participants), and CHD death (80 participants). We analyzed sequencing reads from 4421 MESA participants in the National Heart, Lung, and Blood Institute Trans-Omics for Precision Medicine program using the PathSeq workflow of the Genome Analysis Tool Kit and a 65-gigabase microbial reference. Paired reads aligning to 840 microbes were detected in >1% of participants. The association of the presence of microbe reads with incident CHD (follow-up, ~18 years) was examined. First, important variables were ascertained using a single regularized Cox proportional hazard model, examining change of risk as a function of presence of microbe with age, sex, education level, Life's Simple 7, and inflammation. For variables of importance, the hazard ratio (HR) was estimated in separate (unregularized) Cox proportional hazard models including the same covariates (significance threshold Bonferroni corrected P<6×10-5, 0.05/840). Reads from 2 microbes were significantly associated with CHD: Gemella morbillorum (HR, 3.14 [95% CI, 1.92-5.12]; P=4.86×10-6) and Pseudomonas species NFACC19-2 (HR, 3.22 [95% CI, 2.03-5.41]; P=1.58×10-6). CONCLUSIONS: Metagenomics of whole-genome sequence reads opens a possible frontier for detection of pathogens for chronic diseases. The association of G morbillorum and Pseudomonas species reads with CHD raises the possibilities that microbes may drive atherosclerotic inflammation and that treatments for specific pathogens may provide clinical utility for CHD reduction.


Subject(s)
Coronary Disease , Metagenomics , Humans , Male , Female , Aged , Metagenomics/methods , Middle Aged , Coronary Disease/microbiology , Coronary Disease/genetics , Coronary Disease/diagnosis , United States/epidemiology , Aged, 80 and over , Risk Factors , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/diagnosis , Gram-Positive Bacterial Infections/epidemiology , Incidence
4.
Sci Rep ; 14(1): 17757, 2024 08 01.
Article in English | MEDLINE | ID: mdl-39085340

ABSTRACT

Chronic kidney disease (CKD) impacts about 1 in 7 adults in the United States, but African Americans (AAs) carry a disproportionately higher burden of disease. Epigenetic modifications, such as DNA methylation at cytosine-phosphate-guanine (CpG) sites, have been linked to kidney function and may have clinical utility in predicting the risk of CKD. Given the dynamic relationship between the epigenome, environment, and disease, AAs may be especially sensitive to environment-driven methylation alterations. Moreover, risk models incorporating CpG methylation have been shown to predict disease across multiple racial groups. In this study, we developed a methylation risk score (MRS) for CKD in cohorts of AAs. We selected nine CpG sites that were previously reported to be associated with estimated glomerular filtration rate (eGFR) in epigenome-wide association studies to construct a MRS in the Hypertension Genetic Epidemiology Network (HyperGEN). In logistic mixed models, the MRS was significantly associated with prevalent CKD and was robust to multiple sensitivity analyses, including CKD risk factors. There was modest replication in validation cohorts. In summary, we demonstrated that an eGFR-based CpG score is an independent predictor of prevalent CKD, suggesting that MRS should be further investigated for clinical utility in evaluating CKD risk and progression.


Subject(s)
CpG Islands , DNA Methylation , Glomerular Filtration Rate , Renal Insufficiency, Chronic , Humans , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/epidemiology , Male , Female , Middle Aged , Risk Factors , Black or African American/genetics , Aged , Genome-Wide Association Study , Epigenesis, Genetic , Adult , Genetic Predisposition to Disease
5.
Am J Hum Genet ; 111(1): 133-149, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38181730

ABSTRACT

Bulk-tissue molecular quantitative trait loci (QTLs) have been the starting point for interpreting disease-associated variants, and context-specific QTLs show particular relevance for disease. Here, we present the results of mapping interaction QTLs (iQTLs) for cell type, age, and other phenotypic variables in multi-omic, longitudinal data from the blood of individuals of diverse ancestries. By modeling the interaction between genotype and estimated cell-type proportions, we demonstrate that cell-type iQTLs could be considered as proxies for cell-type-specific QTL effects, particularly for the most abundant cell type in the tissue. The interpretation of age iQTLs, however, warrants caution because the moderation effect of age on the genotype and molecular phenotype association could be mediated by changes in cell-type composition. Finally, we show that cell-type iQTLs contribute to cell-type-specific enrichment of diseases that, in combination with additional functional data, could guide future functional studies. Overall, this study highlights the use of iQTLs to gain insights into the context specificity of regulatory effects.


Subject(s)
Gene Expression Regulation , Quantitative Trait Loci , Humans , Quantitative Trait Loci/genetics , Genotype , Phenotype
6.
Cell Genom ; 3(10): 100401, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37868038

ABSTRACT

Each human genome has tens of thousands of rare genetic variants; however, identifying impactful rare variants remains a major challenge. We demonstrate how use of personal multi-omics can enable identification of impactful rare variants by using the Multi-Ethnic Study of Atherosclerosis, which included several hundred individuals, with whole-genome sequencing, transcriptomes, methylomes, and proteomes collected across two time points, 10 years apart. We evaluated each multi-omics phenotype's ability to separately and jointly inform functional rare variation. By combining expression and protein data, we observed rare stop variants 62 times and rare frameshift variants 216 times as frequently as controls, compared to 13-27 times as frequently for expression or protein effects alone. We extended a Bayesian hierarchical model, "Watershed," to prioritize specific rare variants underlying multi-omics signals across the regulatory cascade. With this approach, we identified rare variants that exhibited large effect sizes on multiple complex traits including height, schizophrenia, and Alzheimer's disease.

7.
Sci Rep ; 13(1): 17680, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37848499

ABSTRACT

Despite the prognostic value of arterial stiffness (AS) and pulsatile hemodynamics (PH) for cardiovascular morbidity and mortality, epigenetic modifications that contribute to AS/PH remain unknown. To gain a better understanding of the link between epigenetics (DNA methylation) and AS/PH, we examined the relationship of eight measures of AS/PH with CpG sites and co-methylated regions using multi-ancestry participants from Trans-Omics for Precision Medicine (TOPMed) Multi-Ethnic Study of Atherosclerosis (MESA) with sample sizes ranging from 438 to 874. Epigenome-wide association analysis identified one genome-wide significant CpG (cg20711926-CYP1B1) associated with aortic augmentation index (AIx). Follow-up analyses, including gene set enrichment analysis, expression quantitative trait methylation analysis, and functional enrichment analysis on differentially methylated positions and regions, further prioritized three CpGs and their annotated genes (cg23800023-ETS1, cg08426368-TGFB3, and cg17350632-HLA-DPB1) for AIx. Among these, ETS1 and TGFB3 have been previously prioritized as candidate genes. Furthermore, both ETS1 and HLA-DPB1 have significant tissue correlations between Whole Blood and Aorta in GTEx, which suggests ETS1 and HLA-DPB1 could be potential biomarkers in understanding pathophysiology of AS/PH. Overall, our findings support the possible role of epigenetic regulation via DNA methylation of specific genes associated with AIx as well as identifying potential targets for regulation of AS/PH.


Subject(s)
Atherosclerosis , Epigenesis, Genetic , Humans , Epigenome , Transforming Growth Factor beta3/genetics , Precision Medicine , Genome-Wide Association Study , DNA Methylation , CpG Islands/genetics , Atherosclerosis/genetics
8.
bioRxiv ; 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37662416

ABSTRACT

Blood lipid traits are treatable and heritable risk factors for heart disease, a leading cause of mortality worldwide. Although genome-wide association studies (GWAS) have discovered hundreds of variants associated with lipids in humans, most of the causal mechanisms of lipids remain unknown. To better understand the biological processes underlying lipid metabolism, we investigated the associations of plasma protein levels with total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL), and low-density lipoprotein cholesterol (LDL) in blood. We trained protein prediction models based on samples in the Multi-Ethnic Study of Atherosclerosis (MESA) and applied them to conduct proteome-wide association studies (PWAS) for lipids using the Global Lipids Genetics Consortium (GLGC) data. Of the 749 proteins tested, 42 were significantly associated with at least one lipid trait. Furthermore, we performed transcriptome-wide association studies (TWAS) for lipids using 9,714 gene expression prediction models trained on samples from peripheral blood mononuclear cells (PBMCs) in MESA and 49 tissues in the Genotype-Tissue Expression (GTEx) project. We found that although PWAS and TWAS can show different directions of associations in an individual gene, 40 out of 49 tissues showed a positive correlation between PWAS and TWAS signed p-values across all the genes, which suggests a high-level consistency between proteome-lipid associations and transcriptome-lipid associations.

9.
Cell Metab ; 35(9): 1646-1660.e3, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37582364

ABSTRACT

Although many novel gene-metabolite and gene-protein associations have been identified using high-throughput biochemical profiling, systematic studies that leverage human genetics to illuminate causal relationships between circulating proteins and metabolites are lacking. Here, we performed protein-metabolite association studies in 3,626 plasma samples from three human cohorts. We detected 171,800 significant protein-metabolite pairwise correlations between 1,265 proteins and 365 metabolites, including established relationships in metabolic and signaling pathways such as the protein thyroxine-binding globulin and the metabolite thyroxine, as well as thousands of new findings. In Mendelian randomization (MR) analyses, we identified putative causal protein-to-metabolite associations. We experimentally validated top MR associations in proof-of-concept plasma metabolomics studies in three murine knockout strains of key protein regulators. These analyses identified previously unrecognized associations between bioactive proteins and metabolites in human plasma. We provide publicly available data to be leveraged for studies in human metabolism and disease.


Subject(s)
Metabolomics , Proteomics , Humans , Animals , Mice , Signal Transduction , Genome-Wide Association Study , Polymorphism, Single Nucleotide/genetics
10.
Cell Genom ; 3(8): 100359, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37601969

ABSTRACT

Multi-omics datasets are becoming more common, necessitating better integration methods to realize their revolutionary potential. Here, we introduce multi-set correlation and factor analysis (MCFA), an unsupervised integration method tailored to the unique challenges of high-dimensional genomics data that enables fast inference of shared and private factors. We used MCFA to integrate methylation markers, protein expression, RNA expression, and metabolite levels in 614 diverse samples from the Trans-Omics for Precision Medicine/Multi-Ethnic Study of Atherosclerosis multi-omics pilot. Samples cluster strongly by ancestry in the shared space, even in the absence of genetic information, while private spaces frequently capture dataset-specific technical variation. Finally, we integrated genetic data by conducting a genome-wide association study (GWAS) of our inferred factors, observing that several factors are enriched for GWAS hits and trans-expression quantitative trait loci. Two of these factors appear to be related to metabolic disease. Our study provides a foundation and framework for further integrative analysis of ever larger multi-modal genomic datasets.

11.
Ann Am Thorac Soc ; 20(8): 1124-1135, 2023 08.
Article in English | MEDLINE | ID: mdl-37351609

ABSTRACT

Rationale: Chronic obstructive pulmonary disease (COPD) is a complex disease characterized by airway obstruction and accelerated lung function decline. Our understanding of systemic protein biomarkers associated with COPD remains incomplete. Objectives: To determine what proteins and pathways are associated with impaired pulmonary function in a diverse population. Methods: We studied 6,722 participants across six cohort studies with both aptamer-based proteomic and spirometry data (4,566 predominantly White participants in a discovery analysis and 2,156 African American cohort participants in a validation). In linear regression models, we examined protein associations with baseline forced expiratory volume in 1 second (FEV1) and FEV1/forced vital capacity (FVC). In linear mixed effects models, we investigated the associations of baseline protein levels with rate of FEV1 decline (ml/yr) in 2,777 participants with up to 7 years of follow-up spirometry. Results: We identified 254 proteins associated with FEV1 in our discovery analyses, with 80 proteins validated in the Jackson Heart Study. Novel validated protein associations include kallistatin serine protease inhibitor, growth differentiation factor 2, and tumor necrosis factor-like weak inducer of apoptosis (discovery ß = 0.0561, Q = 4.05 × 10-10; ß = 0.0421, Q = 1.12 × 10-3; and ß = 0.0358, Q = 1.67 × 10-3, respectively). In longitudinal analyses within cohorts with follow-up spirometry, we identified 15 proteins associated with FEV1 decline (Q < 0.05), including elafin leukocyte elastase inhibitor and mucin-associated TFF2 (trefoil factor 2; ß = -4.3 ml/yr, Q = 0.049; ß = -6.1 ml/yr, Q = 0.032, respectively). Pathways and processes highlighted by our study include aberrant extracellular matrix remodeling, enhanced innate immune response, dysregulation of angiogenesis, and coagulation. Conclusions: In this study, we identify and validate novel biomarkers and pathways associated with lung function traits in a racially diverse population. In addition, we identify novel protein markers associated with FEV1 decline. Several protein findings are supported by previously reported genetic signals, highlighting the plausibility of certain biologic pathways. These novel proteins might represent markers for risk stratification, as well as novel molecular targets for treatment of COPD.


Subject(s)
Lung , Pulmonary Disease, Chronic Obstructive , Humans , Forced Expiratory Volume/physiology , Proteomics , Vital Capacity/physiology , Spirometry , Biomarkers
12.
Am Heart J ; 260: 151-173, 2023 06.
Article in English | MEDLINE | ID: mdl-36868395

ABSTRACT

BACKGROUND: Despite different prevalence, pathobiology, and prognosis between etiologically distinct myocardial infarction (MI) subtypes, prospective study of risk factor for MI in large NHLBI-sponsored cardiovascular cohorts is limited to acute MI as a singular entity. Therefore, we sought to utilize the Multi-Ethnic Study of Atherosclerosis (MESA), a large prospective primary prevention cardiovascular study, to define the incidence and risk factor profile of individual myocardial injury subtypes. METHODS: We describe the rationale and design of re-adjudicating 4,080 events that occurred over the first 14 years of follow-up in MESA for the presence and subtype of myocardial injury as defined by the Fourth Universal Definition of MI: MI type 1 to 5, acute non-ischemic myocardial injury, and chronic myocardial injury. The project utilizes a 2-physician adjudication process via examination of medical records, abstracted data collection forms, cardiac biomarker results, and electrocardiograms of all relevant clinical events. Comparison of the magnitude and direction of associations between baseline traditional and novel cardiovascular risk factors with incident and recurrent acute MI subtypes and acute non-ischemic myocardial injury events will be made. CONCLUSIONS: This project will result in one of the first large prospective cardiovascular cohort with modern classification of acute MI subtypes, as well as a full accounting of non-ischemic myocardial injury events, with implications for numerous ongoing and future studies in MESA. By creating precise MI phenotypes, and defining their epidemiology, this project will allow for discovery of novel pathobiology-specific risk factors, allow for development of more accurate risk prediction, and suggest more targeted preventive strategies.


Subject(s)
Atherosclerosis , Heart Injuries , Myocardial Infarction , Humans , Prospective Studies , Myocardial Infarction/epidemiology , Myocardial Infarction/diagnosis , Atherosclerosis/diagnosis , Risk Factors
13.
Diabetes ; 72(5): 653-665, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36791419

ABSTRACT

Few studies have demonstrated reproducible gene-diet interactions (GDIs) impacting metabolic disease risk factors, likely due in part to measurement error in dietary intake estimation and insufficient capture of rare genetic variation. We aimed to identify GDIs across the genetic frequency spectrum impacting the macronutrient-glycemia relationship in genetically and culturally diverse cohorts. We analyzed 33,187 participants free of diabetes from 10 National Heart, Lung, and Blood Institute Trans-Omics for Precision Medicine program cohorts with whole-genome sequencing, self-reported diet, and glycemic trait data. We fit cohort-specific, multivariable-adjusted linear mixed models for the effect of diet, modeled as an isocaloric substitution of carbohydrate for fat, and its interactions with common and rare variants genome-wide. In main effect meta-analyses, participants consuming more carbohydrate had modestly lower glycemic trait values (e.g., for glycated hemoglobin [HbA1c], -0.013% HbA1c/250 kcal substitution). In GDI meta-analyses, a common African ancestry-enriched variant (rs79762542) reached study-wide significance and replicated in the UK Biobank cohort, indicating a negative carbohydrate-HbA1c association among major allele homozygotes only. Simulations revealed that >150,000 samples may be necessary to identify similar macronutrient GDIs under realistic assumptions about effect size and measurement error. These results generate hypotheses for further exploration of modifiable metabolic disease risk in additional cohorts with African ancestry. ARTICLE HIGHLIGHTS: We aimed to identify genetic modifiers of the dietary macronutrient-glycemia relationship using whole-genome sequence data from 10 Trans-Omics for Precision Medicine program cohorts. Substitution models indicated a modest reduction in glycemia associated with an increase in dietary carbohydrate at the expense of fat. Genome-wide interaction analysis identified one African ancestry-enriched variant near the FRAS1 gene that may interact with macronutrient intake to influence hemoglobin A1c. Simulation-based power calculations accounting for measurement error suggested that substantially larger sample sizes may be necessary to discover further gene-macronutrient interactions.


Subject(s)
Diabetes Mellitus , Diet , Humans , Glycated Hemoglobin/genetics , Diabetes Mellitus/genetics , Eating , Guanine Nucleotide Dissociation Inhibitors/genetics , Genome-Wide Association Study
14.
Circ Res ; 131(7): 601-615, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36052690

ABSTRACT

BACKGROUND: Racial differences in metabolomic profiles may reflect underlying differences in social determinants of health by self-reported race and may be related to racial disparities in coronary heart disease (CHD) among women in the United States. However, the magnitude of differences in metabolomic profiles between Black and White women in the United States has not been well-described. It also remains unknown whether such differences are related to differences in CHD risk. METHODS: Plasma metabolomic profiles were analyzed using liquid chromatography-tandem mass spectrometry in the WHI-OS (Women's Health Initiative-Observational Study; 138 Black and 696 White women), WHI-HT trials (WHI-Hormone Therapy; 156 Black and 1138 White women), MESA (Multi-Ethnic Study of Atherosclerosis; 114 Black and 219 White women), JHS (Jackson Heart Study; 1465 Black women with 107 incident CHD cases), and NHS (Nurses' Health Study; 2506 White women with 136 incident CHD cases). First, linear regression models were used to estimate associations between self-reported race and 472 metabolites in WHI-OS (discovery); findings were replicated in WHI-HT and validated in MESA. Second, we used elastic net regression to construct a racial difference metabolomic pattern (RDMP) representing differences in the metabolomic patterns between Black and White women in the WHI-OS; the RDMP was validated in the WHI-HT and MESA. Third, using conditional logistic regressions in the WHI (717 CHD cases and 719 matched controls), we examined associations of metabolites with large differences in levels by race and the RDMP with risk of CHD, and the results were replicated in Black women from the JHS and White women from the NHS. RESULTS: Of the 472 tested metabolites, levels of 259 (54.9%) metabolites, mostly lipid metabolites and amino acids, significantly differed between Black and White women in both WHI-OS and WHI-HT after adjusting for baseline characteristics, socioeconomic status, lifestyle factors, baseline health conditions, and medication use (false discovery rate <0.05); similar trends were observed in MESA. The RDMP, composed of 152 metabolites, was identified in the WHI-OS and showed significantly different distributions between Black and White women in the WHI-HT and MESA. Higher RDMP quartiles were associated with an increased risk of incident CHD (odds ratio=1.51 [0.97-2.37] for the highest quartile comparing to the lowest; Ptrend=0.02), independent of self-reported race and known CHD risk factors. In race-stratified analyses, the RDMP-CHD associations were more pronounced in White women. Similar patterns were observed in Black women from the JHS and White women from the NHS. CONCLUSIONS: Metabolomic profiles significantly and substantially differ between Black and White women and may be associated with CHD risk and racial disparities in US women.


Subject(s)
Coronary Disease , Amino Acids , Coronary Disease/diagnosis , Coronary Disease/epidemiology , Female , Hormones , Humans , Lipids , Risk Factors , United States/epidemiology
15.
Nat Commun ; 13(1): 4923, 2022 08 22.
Article in English | MEDLINE | ID: mdl-35995766

ABSTRACT

Integrating genetic information with metabolomics has provided new insights into genes affecting human metabolism. However, gene-metabolite integration has been primarily studied in individuals of European Ancestry, limiting the opportunity to leverage genomic diversity for discovery. In addition, these analyses have principally involved known metabolites, with the majority of the profiled peaks left unannotated. Here, we perform a whole genome association study of 2,291 metabolite peaks (known and unknown features) in 2,466 Black individuals from the Jackson Heart Study. We identify 519 locus-metabolite associations for 427 metabolite peaks and validate our findings in two multi-ethnic cohorts. A significant proportion of these associations are in ancestry specific alleles including findings in APOE, TTR and CD36. We leverage tandem mass spectrometry to annotate unknown metabolites, providing new insight into hereditary diseases including transthyretin amyloidosis and sickle cell disease. Our integrative omics approach leverages genomic diversity to provide novel insights into diverse cardiometabolic diseases.


Subject(s)
Cardiovascular Diseases , Genome-Wide Association Study , Black People , Cardiovascular Diseases/ethnology , Cardiovascular Diseases/genetics , Humans , Metabolome/genetics , Metabolomics , Tandem Mass Spectrometry
16.
Circulation ; 146(3): 229-239, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35861763

ABSTRACT

BACKGROUND: Despite improvements in population health, marked racial and ethnic disparities in longevity and cardiovascular disease (CVD) mortality persist. This study aimed to describe risks for all-cause and CVD mortality by race and ethnicity, before and after accounting for socioeconomic status (SES) and other factors, in the MESA study (Multi-Ethnic Study of Atherosclerosis). METHODS: MESA recruited 6814 US adults, 45 to 84 years of age, free of clinical CVD at baseline, including Black, White, Hispanic, and Chinese individuals (2000-2002). Using Cox proportional hazards modeling with time-updated covariates, we evaluated the association of self-reported race and ethnicity with all-cause and adjudicated CVD mortality, with progressive adjustments for age and sex, SES (neighborhood SES, income, education, and health insurance), lifestyle and psychosocial risk factors, clinical risk factors, and immigration history. RESULTS: During a median of 15.8 years of follow-up, 22.8% of participants (n=1552) died, of which 5.3% (n=364) died of CVD. After adjusting for age and sex, Black participants had a 34% higher mortality hazard (hazard ratio [HR], 1.34 [95% CI, 1.19-1.51]), Chinese participants had a 21% lower mortality hazard (HR, 0.79 [95% CI, 0.66-0.95]), and there was no mortality difference in Hispanic participants (HR, 0.99 [95% CI, 0.86-1.14]) compared with White participants. After adjusting for SES, the mortality HR for Black participants compared with White participants was reduced (HR, 1.16 [95% CI, 1.01-1.34]) but still statistically significant. With adjustment for SES, the mortality hazards for Chinese and Hispanic participants also decreased in comparison with White participants. After further adjustment for additional risk factors and immigration history, Hispanic participants (HR, 0.77 [95% CI, 0.63-0.94]) had a lower mortality risk than White participants, and hazard ratios for Black participants (HR, 1.08 [95% CI, 0.92-1.26]) and Chinese participants (HR, 0.81 [95% CI, 0.60-1.08]) were not significantly different from those of White participants. Similar trends were seen for CVD mortality, although the age- and sex-adjusted HR for CVD mortality for Black participants compared with White participants was greater than all-cause mortality (HR, 1.72 [95% CI, 1.34-2.21] compared with HR, 1.34 [95% CI, 1.19-1.51]). CONCLUSIONS: These results highlight persistent racial and ethnic differences in overall and CVD mortality, largely attributable to social determinants of health, and support the need to identify and act on systemic factors that shape differences in health across racial and ethnic groups.


Subject(s)
Cardiovascular Diseases , Ethnic and Racial Minorities , Health Status Disparities , Social Determinants of Health , Adult , Cardiovascular Diseases/ethnology , Cardiovascular Diseases/mortality , Ethnicity , Hispanic or Latino , Humans , Risk Factors , White People
17.
Circ Res ; 131(2): e51-e69, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35658476

ABSTRACT

BACKGROUND: Epigenetic dysregulation has been proposed as a key mechanism for arsenic-related cardiovascular disease (CVD). We evaluated differentially methylated positions (DMPs) as potential mediators on the association between arsenic and CVD. METHODS: Blood DNA methylation was measured in 2321 participants (mean age 56.2, 58.6% women) of the Strong Heart Study, a prospective cohort of American Indians. Urinary arsenic species were measured using high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry. We identified DMPs that are potential mediators between arsenic and CVD. In a cross-species analysis, we compared those DMPs with differential liver DNA methylation following early-life arsenic exposure in the apoE knockout (apoE-/-) mouse model of atherosclerosis. RESULTS: A total of 20 and 13 DMPs were potential mediators for CVD incidence and mortality, respectively, several of them annotated to genes related to diabetes. Eleven of these DMPs were similarly associated with incident CVD in 3 diverse prospective cohorts (Framingham Heart Study, Women's Health Initiative, and Multi-Ethnic Study of Atherosclerosis). In the mouse model, differentially methylated regions in 20 of those genes and DMPs in 10 genes were associated with arsenic. CONCLUSIONS: Differential DNA methylation might be part of the biological link between arsenic and CVD. The gene functions suggest that diabetes might represent a relevant mechanism for arsenic-related cardiovascular risk in populations with a high burden of diabetes.


Subject(s)
Arsenic , Atherosclerosis , Cardiovascular Diseases , Animals , Apolipoproteins E , Arsenic/toxicity , Atherosclerosis/chemically induced , Atherosclerosis/genetics , Cardiovascular Diseases/chemically induced , Cardiovascular Diseases/genetics , DNA Methylation , Female , Humans , Male , Mice , Middle Aged , Prospective Studies
18.
Am J Hum Genet ; 109(7): 1286-1297, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35716666

ABSTRACT

Despite the growing number of genome-wide association studies (GWASs), it remains unclear to what extent gene-by-gene and gene-by-environment interactions influence complex traits in humans. The magnitude of genetic interactions in complex traits has been difficult to quantify because GWASs are generally underpowered to detect individual interactions of small effect. Here, we develop a method to test for genetic interactions that aggregates information across all trait-associated loci. Specifically, we test whether SNPs in regions of European ancestry shared between European American and admixed African American individuals have the same causal effect sizes. We hypothesize that in African Americans, the presence of genetic interactions will drive the causal effect sizes of SNPs in regions of European ancestry to be more similar to those of SNPs in regions of African ancestry. We apply our method to two traits: gene expression in 296 African Americans and 482 European Americans in the Multi-Ethnic Study of Atherosclerosis (MESA) and low-density lipoprotein cholesterol (LDL-C) in 74K African Americans and 296K European Americans in the Million Veteran Program (MVP). We find significant evidence for genetic interactions in our analysis of gene expression; for LDL-C, we observe a similar point estimate, although this is not significant, most likely due to lower statistical power. These results suggest that gene-by-gene or gene-by-environment interactions modify the effect sizes of causal variants in human complex traits.


Subject(s)
Genome-Wide Association Study , Multifactorial Inheritance , Cholesterol, LDL , Gene Expression , Humans , Multifactorial Inheritance/genetics , Polymorphism, Single Nucleotide/genetics , White People/genetics
19.
Cell Genom ; 2(1)2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35530816

ABSTRACT

Genetic studies on telomere length are important for understanding age-related diseases. Prior GWAS for leukocyte TL have been limited to European and Asian populations. Here, we report the first sequencing-based association study for TL across ancestrally-diverse individuals (European, African, Asian and Hispanic/Latino) from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program. We used whole genome sequencing (WGS) of whole blood for variant genotype calling and the bioinformatic estimation of telomere length in n=109,122 individuals. We identified 59 sentinel variants (p-value <5×10-9) in 36 loci associated with telomere length, including 20 newly associated loci (13 were replicated in external datasets). There was little evidence of effect size heterogeneity across populations. Fine-mapping at OBFC1 indicated the independent signals colocalized with cell-type specific eQTLs for OBFC1 (STN1). Using a multi-variant gene-based approach, we identified two genes newly implicated in telomere length, DCLRE1B (SNM1B) and PARN. In PheWAS, we demonstrated our TL polygenic trait scores (PTS) were associated with increased risk of cancer-related phenotypes.

20.
Retina ; 42(7): 1384-1391, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35271555

ABSTRACT

PURPOSE: To examine the association between omega-3 polyunsaturated fatty acids, docosahexaenoic acid, and eicosapentaenoic acid and age-related macular degeneration (AMD) in the Multi-Ethnic Study of Atherosclerosis cohort. METHODS: Multi-Ethnic Study of Atherosclerosis is a multicenter, prospective cohort study designed to identify risk factors for cardiovascular disease in four ethnic groups. Six thousand eight hundred and fourteen participants of White, African American, Hispanic/Latino, and Chinese descent, aged 45-84 years, were recruited, with those found to have cardiovascular disease excluded. Our study population included all Multi-Ethnic Study of Atherosclerosis participants with baseline polyunsaturated fatty acid measurements and retinal photography at Examination 5 (n = 3,772). Fundus photographs were assessed for AMD using a standard grading protocol. Relative risk regression (log link) determined associations between polyunsaturated fatty acid levels and AMD. RESULTS: There was a significant association between increasing docosahexaenoic acid levels and increasing docosahexaenoic acid + eicosapentaenoic acid levels with reduced risk for early AMD (n = 214 participants with early AMD, of which n = 99 (46.3%) are non-White). Eicosapentaenoic acid levels alone were not significantly associated with AMD. CONCLUSION: Our analysis suggests increasing levels of docosahexaenoic acid are associated with reduced risk for early AMD in a multiethnic cohort. This represents the first racially diverse study demonstrating an association between omega-3 polyunsaturated fatty acids and AMD risk.


Subject(s)
Atherosclerosis , Fatty Acids, Omega-3 , Macular Degeneration , Docosahexaenoic Acids , Eicosapentaenoic Acid , Ethnicity , Humans , Macular Degeneration/diagnosis , Macular Degeneration/epidemiology , Prospective Studies , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL