Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
2.
bioRxiv ; 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38116029

ABSTRACT

Polycomb Repressive Complex 2 (PRC2)-mediated histone H3K27 tri-methylation (H3K27me3) recruits canonical PRC1 (cPRC1) to maintain heterochromatin. In early development, polycomb-regulated genes are connected through long-range 3D interactions which resolve upon differentiation. Here, we report that polycomb looping is controlled by H3K27me3 spreading and regulates target gene silencing and cell fate specification. Using glioma-derived H3 Lys-27-Met (H3K27M) mutations as tools to restrict H3K27me3 deposition, we show that H3K27me3 confinement concentrates the chromatin pool of cPRC1, resulting in heightened 3D interactions mirroring chromatin architecture of pluripotency, and stringent gene repression that maintains cells in progenitor states to facilitate tumor development. Conversely, H3K27me3 spread in pluripotent stem cells, following neural differentiation or loss of the H3K36 methyltransferase NSD1, dilutes cPRC1 concentration and dissolves polycomb loops. These results identify the regulatory principles and disease implications of polycomb looping and nominate histone modification-guided distribution of reader complexes as an important mechanism for nuclear compartment organization. Highlights: The confinement of H3K27me3 at PRC2 nucleation sites without its spreading correlates with increased 3D chromatin interactions.The H3K27M oncohistone concentrates canonical PRC1 that anchors chromatin loop interactions in gliomas, silencing developmental programs.Stem and progenitor cells require factors promoting H3K27me3 confinement, including H3K36me2, to maintain cPRC1 loop architecture.The cPRC1-H3K27me3 interaction is a targetable driver of aberrant self-renewal in tumor cells.

3.
PLoS One ; 18(11): e0294406, 2023.
Article in English | MEDLINE | ID: mdl-38019850

ABSTRACT

The importance and fast growth of therapeutic monoclonal antibodies, both innovator and biosimilar products, have triggered the need for the development of characterization methods at high resolution such as nuclear magnetic resonance (NMR) spectroscopy. However, the full power of NMR spectroscopy cannot be unleashed without labelling the mAb of interest with NMR-active isotopes. Here, we present strategies using either Komagataella phaffii (Pichia pastoris) or Escherichia coli that can be widely applied for the production of the antigen-binding fragment (Fab) of therapeutic antibodies of immunoglobulin G1 kappa isotype. The E. coli approach consists of expressing Fab fragments as a single polypeptide chain with a cleavable linker between the heavy and light chain in inclusion bodies, while K. phaffii secretes a properly folded fragment in the culture media. After optimization, the protocol yielded 10-45 mg of single chain adalimumab-Fab, trastuzumab-Fab, rituximab-Fab, and NISTmAb-Fab per liter of culture. Comparison of the 2D-1H-15N-HSQC spectra of each Fab fragment, without their polyhistidine tag and linker, with the corresponding Fab from the innovator product showed that all four fragments have folded into the correct conformation. Production of 2H-13C-15N-adalimumab-scFab and 2H-13C-15N-trastuzumab-scFab (>98% enrichment for all three isotopes) yielded NMR samples where all amide deuterons have completely exchanged back to proton during the refolding procedure.


Subject(s)
Escherichia coli , Immunoglobulin Fab Fragments , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/chemistry , Escherichia coli/genetics , Pichia , Adalimumab/therapeutic use , Carbon Isotopes , Antibodies, Monoclonal , Trastuzumab
4.
Vaccines (Basel) ; 11(10)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37896985

ABSTRACT

In recent years, lipid nanoparticles (LNPs) have emerged as a revolutionary technology for vaccine delivery. LNPs serve as an integral component of mRNA vaccines by protecting and transporting the mRNA payload into host cells. Despite their prominence in mRNA vaccines, there remains a notable gap in our understanding of the potential application of LNPs for the delivery of DNA vaccines. In this study, we sought to investigate the suitability of leading LNP formulations for the delivery of plasmid DNA (pDNA). In addition, we aimed to explore key differences in the properties of popular LNP formulations when delivering either mRNA or DNA. To address these questions, we compared three leading LNP formulations encapsulating mRNA- or pDNA-encoding firefly luciferase based on potency, expression kinetics, biodistribution, and immunogenicity. Following intramuscular injection in mice, we determined that RNA-LNPs formulated with either SM-102 or ALC-0315 lipids were the most potent (all p-values < 0.01) and immunogenic (all p-values < 0.05), while DNA-LNPs formulated with SM-102 or ALC-0315 demonstrated the longest duration of signal. Additionally, all LNP formulations were found to induce expression in the liver that was proportional to the signal at the injection site (SM102: r = 0.8787, p < 0.0001; ALC0315: r = 0.9012, p < 0.0001; KC2: r = 0.9343, p < 0.0001). Overall, this study provides important insights into the differences between leading LNP formulations and their applicability to DNA- and RNA-based vaccinations.

5.
Front Oncol ; 13: 1221611, 2023.
Article in English | MEDLINE | ID: mdl-37576901

ABSTRACT

Introduction: Medulloblastoma is the most common type of malignant pediatric brain tumor with group 4 medulloblastomas (G4 MBs) accounting for 40% of cases. However, the molecular mechanisms that underlie this subgroup are still poorly understood. Point mutations are detected in a large number of genes at low incidence per gene while the detection of complex structural variants in recurrently affected genes typically requires the application of long-read technologies. Methods: Here, we applied linked-read sequencing, which combines the long-range genome information of long-read sequencing with the high base pair accuracy of short read sequencing and very low sample input requirements. Results: We demonstrate the detection of complex structural variants and point mutations in these tumors, and, for the first time, the detection of extrachromosomal DNA (ecDNA) with linked-reads. We provide further evidence for the high heterogeneity of somatic mutations in G4 MBs and add new complex events associated with it. Discussion: We detected several enhancer-hijacking events, an ecDNA containing the MYCN gene, and rare structural rearrangements, such a chromothripsis in a G4 medulloblastoma, chromoplexy involving 8 different chromosomes, a TERT gene rearrangement, and a PRDM6 duplication.

6.
Nat Commun ; 14(1): 3062, 2023 05 27.
Article in English | MEDLINE | ID: mdl-37244935

ABSTRACT

Self-renewal is a crucial property of glioblastoma cells that is enabled by the choreographed functions of chromatin regulators and transcription factors. Identifying targetable epigenetic mechanisms of self-renewal could therefore represent an important step toward developing effective treatments for this universally lethal cancer. Here we uncover an epigenetic axis of self-renewal mediated by the histone variant macroH2A2. With omics and functional assays deploying patient-derived in vitro and in vivo models, we show that macroH2A2 shapes chromatin accessibility at enhancer elements to antagonize transcriptional programs of self-renewal. macroH2A2 also sensitizes cells to small molecule-mediated cell death via activation of a viral mimicry response. Consistent with these results, our analyses of clinical cohorts indicate that high transcriptional levels of this histone variant are associated with better prognosis of high-grade glioma patients. Our results reveal a targetable epigenetic mechanism of self-renewal controlled by macroH2A2 and suggest additional treatment approaches for glioblastoma patients.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Histones/genetics , Histones/metabolism , Glioblastoma/metabolism , Gene Expression Regulation, Neoplastic , Chromatin/metabolism , Epigenesis, Genetic , Cell Line, Tumor , Neoplastic Stem Cells/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/metabolism
7.
Front Immunol ; 14: 1020134, 2023.
Article in English | MEDLINE | ID: mdl-37006299

ABSTRACT

Introduction: The incidence of Lyme disease (LD) in Canada and the United States has risen over the last decade, nearing 480,000 cases each year. Borrelia burgdorferi sensu lato, the causative agent of LD, is transmitted to humans through the bite of an infected tick, resulting in flu-like symptoms and often a characteristic bull's-eye rash. In more severe cases, disseminated bacterial infection can cause arthritis, carditis and neurological impairments. Currently, no vaccine is available for the prevention of LD in humans. Methods: In this study, we developed a lipid nanoparticle (LNP)-encapsulated DNA vaccine encoding outer surface protein C type A (OspC-type A) of B. burgdorferi. Results: Vaccination of C3H/HeN mice with two doses of the candidate vaccine induced significant OspC-type A-specific antibody titres and borreliacidal activity. Analysis of the bacterial burden following needle challenge with B. burgdorferi (OspC-type A) revealed that the candidate vaccine afforded effective protection against homologous infection across a range of susceptible tissues. Notably, vaccinated mice were protected against carditis and lymphadenopathy associated with Lyme borreliosis. Discussion: Overall, the results of this study provide support for the use of a DNA-LNP platform for the development of LD vaccines.


Subject(s)
Borrelia burgdorferi , Lyme Disease , Myocarditis , Vaccines, DNA , Humans , Mice , Animals , Bacterial Vaccines , Mice, Inbred C3H , DNA
8.
Emerg Microbes Infect ; 12(1): 2192821, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36927227

ABSTRACT

Influenza and Respiratory Syncytial virus (RSV) infections together contribute significantly to the burden of acute lower respiratory tract infections. Despite the disease burden, no approved RSV vaccine is available. While approved vaccines are available for influenza, seasonal vaccination is required to maintain protection. In addition to both being respiratory viruses, they follow a common seasonality, which warrants the necessity for a concerted vaccination approach. Here, we designed bivalent vaccines by utilizing highly conserved sequences, targeting both influenza A and RSV, as either a chimeric antigen or individual antigens separated by a ribosome skipping sequence. These vaccines were found to be effective in protecting the animals from challenge by either virus, with mechanisms of protection being substantially interrogated in this communication.


Subject(s)
Influenza Vaccines , Influenza, Human , Respiratory Syncytial Virus Infections , Mice , Animals , Humans , Respiratory Syncytial Viruses/genetics , Vaccines, Combined , Antibodies, Viral , Respiratory Syncytial Virus Infections/prevention & control , Influenza Vaccines/genetics , Antibodies, Neutralizing
9.
Article in English | MEDLINE | ID: mdl-34819303

ABSTRACT

B-cell acute lymphoblastic leukemia (B-ALL) is often driven by chromosome translocations that result in recurrent and well-studied gene fusions. Currently, fluorescent in situ hybridization probes are used to detect candidate translocations in bone marrow samples from B-ALL patients. Recently Hi-C, a sequencing-based technique originally designed to reconstruct the three-dimensional architecture of the nuclear genome, was shown to effectively recognize structural variants. Here, we demonstrate that Hi-C can be used as a genome-wide assay to detect translocations and other structural variants of potential clinical interest. Structural variants were identified in both bone marrow and peripheral blood samples, including an ETV6-RUNX1 translocation present in one pediatric B-ALL patient. Our report provides proof of principle that Hi-C could be an effective strategy to globally detect driver structural variants in B-ALL peripheral blood specimens, reducing the need for invasive bone marrow biopsies and candidate-based clinical tests.


Subject(s)
Oncogene Proteins, Fusion , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Genomic Structural Variation , Humans , In Situ Hybridization, Fluorescence , Oncogene Proteins, Fusion/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Translocation, Genetic/genetics
10.
Int J Sports Physiol Perform ; 16(12): 1758-1763, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34039769

ABSTRACT

PURPOSE: To compare resistance training using a velocity loss threshold with training to repetition failure on upper-body strength parameters in professional Australian footballers. METHODS: A total of 26 professional Australian footballers (23.9 [4.2] y, 189.9 [7.8] cm, 88.2 [8.8] kg) tested 1-repetition-maximum strength (FPmax) and mean barbell velocity at 85% of 1-repetition maximum on floor press (FPvel). They were then assigned to 2 training groups: 20% velocity loss threshold training (VL; n = 12, maximum-effort lift velocity) or training to repetition failure (TF; n = 14, self-selected lift velocity). Subjects trained twice per week for 3 weeks before being reassessed on FPmax and FPvel. Training volume (total repetitions) was recorded for all training sessions. No differences were present between groups on any pretraining measure. RESULTS: The TF group significantly improved FPmax (105.2-110.9 kg, +5.4%), while the VL group did not (107.5-109.2 kg, +1.6%) (P > .05). Both groups significantly increased FPvel (0.38-0.46 m·s-1, +19.1% and 0.37-0.42 m·s-1, +16.7%, respectively) with no between-groups differences evident (P > .05). The TF group performed significantly more training volume (12.2 vs 6.8 repetitions per session, P > .05). CONCLUSIONS: Training to repetition failure improved FPmax, while training using a velocity loss threshold of 20% did not. Both groups demonstrated similar improvements in FPvel despite the VL group completing 45% less total training volume than the TF group. The reduction in training volume associated with implementing a 20% velocity loss threshold may negatively impact the development of upper-body maximum strength while still enhancing submaximal movement velocity.


Subject(s)
Muscle Strength , Resistance Training , Australia , Humans , Muscle, Skeletal
11.
Sci Rep ; 11(1): 4768, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33637809

ABSTRACT

The development of reference standards for nanoparticle sizing allows for cross laboratory studies and effective transfer of particle sizing methodology. To facilitate this, these reference standards must be stable upon long-term storage. Here, we examine factors that influence the properties of cross-linked albumin nanoparticles, fabricated with an ethanol desolvation method, when reconstituted from a lyophilized state. We demonstrate, with nanoparticle tracking analysis, no significant changes in mean particle diameter upon reconstitution of albumin nanoparticles fabricated with bovine serum albumin loaded with dodecanoic acid, when compared to nanoparticles fabricated with a fatty acid-free BSA. We attribute this stability to the modulation of nanoparticle charge-charge interactions at dodecanoic acid specific binding locations. Furthermore, we demonstrate this in a lyophilized state over six months when stored at - 80 °C. We also show that the reconstitution process is readily transferable between technicians and laboratories and further confirm our finding with dynamic light scattering analysis.

12.
Stem Cell Res Ther ; 12(1): 127, 2021 02 12.
Article in English | MEDLINE | ID: mdl-33579358

ABSTRACT

BACKGROUND: Extracellular vesicles (EVs) produced by human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) are currently investigated for their clinical effectiveness towards immune-mediated diseases. The large amounts of stem cell-derived EVs required for clinical testing suggest that bioreactor production systems may be a more amenable alternative than conventional EV production methods for manufacturing products for therapeutic use in humans. METHODS: To characterize the potential utility of these systems, EVs from four hBM-MSC donors were produced independently using a hollow-fiber bioreactor system under a cGMP-compliant procedure. EVs were harvested and characterized for size, concentration, immunophenotype, and glycan profile at three separate intervals throughout a 25-day period. RESULTS: Bioreactor-inoculated hBM-MSCs maintained high viability and retained their trilineage mesoderm differentiation capability while still expressing MSC-associated markers upon retrieval. EVs collected from the four hBM-MSC donors showed consistency in size and concentration in addition to presenting a consistent surface glycan profile. EV surface immunophenotypic analyses revealed a consistent low immunogenicity profile in addition to the presence of immuno-regulatory CD40 antigen. EV cargo analysis for biomarkers of immune regulation showed a high abundance of immuno-regulatory and angiogenic factors VEGF-A and IL-8. CONCLUSIONS: Significantly, EVs from hBM-MSCs with immuno-regulatory constituents were generated in a large-scale system over a long production period and could be frequently harvested with the same quality and quantity, which will circumvent the challenge for clinical application.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Bioreactors , Bone Marrow , Cell Differentiation , Humans
13.
Front Immunol ; 12: 785349, 2021.
Article in English | MEDLINE | ID: mdl-35095861

ABSTRACT

SARS-CoV-2 infections present a tremendous threat to public health. Safe and efficacious vaccines are the most effective means in preventing the infections. A variety of vaccines have demonstrated excellent efficacy and safety around the globe. Yet, development of alternative forms of vaccines remains beneficial, particularly those with simpler production processes, less stringent storage conditions, and the capability of being used in heterologous prime/boost regimens which have shown improved efficacy against many diseases. Here we reported a novel DNA vaccine comprised of the SARS-CoV-2 spike protein fused with CD40 ligand (CD40L) serving as both a targeting ligand and molecular adjuvant. A single intramuscular injection in Syrian hamsters induced significant neutralizing antibodies 3-weeks after vaccination, with a boost substantially improving immune responses. Moreover, the vaccine also reduced weight loss and suppressed viral replication in the lungs and nasal turbinates of challenged animals. Finally, the incorporation of CD40L into the DNA vaccine was shown to reduce lung pathology more effectively than the DNA vaccine devoid of CD40L. These results collectively indicate that this DNA vaccine candidate could be further explored because of its efficacy and known safety profile.


Subject(s)
CD40 Ligand/immunology , COVID-19/immunology , Mesocricetus/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, DNA/immunology , Adjuvants, Immunologic/pharmacology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/virology , Cell Line , Female , HEK293 Cells , Humans , Lung/immunology , Lung/virology , Mesocricetus/virology , Models, Animal , Vaccination/methods , Vaccines, Inactivated/immunology
14.
ACS Omega ; 5(49): 31845-31857, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33344838

ABSTRACT

Product excipients are used to confer a number of desirable properties on the drug substance to maintain or improve stability and facilitate drug delivery. This is especially important for products where the active pharmaceutical ingredient (API) is a recombinant protein. In this study, we aimed to determine if excipients and formulation conditions affect the structure and/or modulate the dynamics of the protein API of filgrastim products. Samples of uniformly labeled 15N-Met-granulocyte-colony stimulating factor (GCSF) were prepared at 100 µM (near formulation concentration) with various concentrations of individual components (polysorbate-20 and -80, sorbitol) and three pH values. Nuclear magnetic resonance (NMR) spectroscopy techniques were applied to measure chemical shift perturbation (CSP) to detect structural changes, and relaxation parameters (T 1, T 2, and heteronuclear Overhauser effect) were measured to probe the effects on protein backbone motions. In parallel, the same solution conditions were subjected to protein thermal unfolding studies monitored by circular dichroism spectropolarimetry (CD). Detergents (polysorbate-20 and 80) do not induce any observable changes on the protein structure and do not modify its dynamics at formulation concentration. Lowering pH to 4.0, a condition known to stabilize the conformation of filgrastim, as well as the addition of sorbitol produced changes of the fast motion dynamics in the nanosecond and picosecond timescale. NMR-derived order parameters, which measure the local conformational entropy of the protein backbone, show that lowering pH leads to a compaction of the four-helix bundle while the addition of sorbitol relaxes helices B and C, thereby reducing the mobility of loop CD. CSPs and measurements of protein dynamics via NMR-derived order parameters provide a description in structural and motional terms at an atomic resolution on how formulation components contribute to the stabilization of filgrastim products.

16.
Stem Cell Res Ther ; 10(1): 401, 2019 12 18.
Article in English | MEDLINE | ID: mdl-31852509

ABSTRACT

BACKGROUND: Clinical applications have shown extracellular vesicles (EVs) to be a major paracrine effector in therapeutic responses produced by human mesenchymal stromal/stem cells (hMSCs). As the regenerative capacity of EVs is mainly ascribed to the transfer of proteins and RNA composing its cargo, and to the activity attributed by the protein surface markers, we sought to profile the protein composition of small EVs released from hMSCs to identify hMSC-EV biomarkers with potential clinical relevance. METHODS: Small EVs were produced and qualified from five human bone marrow MSC donors at low passage following a 48-h culture in exosome-depleted medium further processed by steps of centrifugation, filtration, and precipitation. Quantitative proteomic analysis comparing the protein profile of the EVs released from hMSCs and their parental cell was conducted using tandem mass tag labeling combined to mass spectrometry (LC-MS/MS) to identify enriched EV protein markers. RESULTS: Nanoparticle tracking analysis showed no differences in the EV concentration and size among the five hMSC donors (1.83 × 1010 ± 3.23 × 109/mL), with the mode particle size measuring at 109.3 ± 5.7 nm. Transmission electron microscopy confirmed the presence of nanovesicles with bilayer membranes. Flow cytometric analysis identified commonly found exosomal (CD63/CD81) and hMSC (CD105/CD44/CD146) markers from released EVs in addition to surface mediators of migration (CD29 and MCSP). Quantitative proteomic identified 270 proteins significantly enriched by at least twofold in EVs released from hMSCs as compared to parental hMSCs, where neuropilin 1 (NRP1) was identified among 21 membrane-bound proteins regulating the migration and invasion of cells, as well as chemotaxis and vasculogenesis. Validation by western blot of multiple batches of EVs confirmed consistent enrichment of NRP1 in the nanovesicles released from all five hMSC donors. CONCLUSION: The identification and verification of NRP1 as a novel enriched surface marker from multiple batches of EVs derived from multiple hMSC donors may serve as a biomarker for the assessment and measurement of EVs for therapeutic uses.


Subject(s)
Extracellular Vesicles/metabolism , Neuropilin-1/metabolism , Proteomics/methods , Adult , Biomarkers/metabolism , Cell Membrane/metabolism , Extracellular Vesicles/chemistry , Humans , Male , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Microscopy, Electron, Transmission , Nanoparticles/chemistry , Particle Size , Tetraspanin 30/metabolism , Young Adult
17.
J Sports Sci Med ; 18(3): 577-585, 2019 09.
Article in English | MEDLINE | ID: mdl-31427881

ABSTRACT

Consistent prescriptions for event-specific training of swimmers are lacking, which points to likely differences in training practices and a potential gap between practice and scientific knowledge. This study aimed to analyze the distance-specific training load of elite swimmers, derive a consistent training sessions' description and reflect on the current recommendations for training and recovery. The individual training regimes of 18 elite British swimmers were documented by surveying four swim and two strength and conditioning (S&C) coaches. The annual and weekly training load and content were compared between swimmers competing in sprint, middle and long-distance events. Thematic analysis of the surveys was conducted to identify key codes and general dimensions and to define a unified classification of the swimming and S&C training sessions. Weekly training loads and content of the swim (ƞ2 - effect size; p = 0.016, ƞ2 = 0.423) and S&C (p = 0.028, ƞ2 = 0.38) sessions significantly differed between the groups. Long-distance swimmers swam significantly longer distances (mean ± SD; 58.1 ± 10.2 km vs. 43.2 ± 5.3 km; p = 0.018) weekly but completed similar number of S&C sessions compared to sprinters. The annual swimming load distribution of middle-distance specialists did not differ from that of long-distance swimmers but consisted of more S&C sessions per week (4.7 ± 0.5 vs. 2.3 ± 2.3; p = 0.04). Sprinters and middle-distance swimmers swam similar distances per week and completed similar number of S&C sessions but with different proportional content. Whereas all coaches reported monitoring fatigue, only 51% indicated implementing individualized recovery protocols. We propose a consistent terminology for the description of training sessions in elite swimming to facilitate good practice exchanges. While the training prescription of elite British swimmers conforms to the scientific training principles, recommendations for recovery protocols to reduce the risk of injury and overtraining are warranted.


Subject(s)
Physical Conditioning, Human/methods , Swimming/physiology , Terminology as Topic , Adolescent , Athletic Performance/physiology , Cumulative Trauma Disorders/prevention & control , Female , Humans , Male , Muscle Fatigue/physiology , Physical Conditioning, Human/adverse effects , Physical Conditioning, Human/classification , Resistance Training , Risk Factors , Swimming/injuries , United Kingdom , Young Adult
18.
Genome Res ; 29(8): 1211-1222, 2019 08.
Article in English | MEDLINE | ID: mdl-31249064

ABSTRACT

We investigated the role of 3D genome architecture in instructing functional properties of glioblastoma stem cells (GSCs) by generating sub-5-kb resolution 3D genome maps by in situ Hi-C. Contact maps at sub-5-kb resolution allow identification of individual DNA loops, domain organization, and large-scale genome compartmentalization. We observed differences in looping architectures among GSCs from different patients, suggesting that 3D genome architecture is a further layer of inter-patient heterogeneity for glioblastoma. Integration of DNA contact maps with chromatin and transcriptional profiles identified specific mechanisms of gene regulation, including the convergence of multiple super enhancers to individual stemness genes within individual cells. We show that the number of loops contacting a gene correlates with elevated transcription. These results indicate that stemness genes are hubs of interaction between multiple regulatory regions, likely to ensure their sustained expression. Regions of open chromatin common among the GSCs tested were poised for expression of immune-related genes, including CD276 We demonstrate that this gene is co-expressed with stemness genes in GSCs and that CD276 can be targeted with an antibody-drug conjugate to eliminate self-renewing cells. Our results demonstrate that integrated structural genomics data sets can be employed to rationally identify therapeutic vulnerabilities in self-renewing cells.


Subject(s)
Brain Neoplasms/genetics , Chromatin/ultrastructure , Chromosome Mapping/methods , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Neoplasm Proteins/genetics , B7 Antigens/antagonists & inhibitors , B7 Antigens/genetics , B7 Antigens/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Proliferation , Chromatin/chemistry , Enhancer Elements, Genetic , Gene Expression Profiling , Genetic Heterogeneity , Genome, Human , Genomics/methods , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Molecular Targeted Therapy , Neoplasm Proteins/classification , Neoplasm Proteins/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Primary Cell Culture , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Transcription, Genetic
19.
Cancer Res ; 79(9): 2111-2123, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30877103

ABSTRACT

Pediatric glioblastoma (pGBM) is a lethal cancer with no effective therapies. To understand the mechanisms of tumor evolution in this cancer, we performed whole-genome sequencing with linked reads on longitudinally resected pGBM samples. Our analyses showed that all diagnostic and recurrent samples were collections of genetically diverse subclones. Clonal composition rapidly evolved at recurrence, with less than 8% of nonsynonymous single-nucleotide variants being shared in diagnostic-recurrent pairs. To track the origins of the mutational events observed in pGBM, we generated whole-genome datasets for two patients and their parents. These trios showed that genetic variants could be (i) somatic, (ii) inherited from a healthy parent, or (iii) de novo in the germlines of pGBM patients. Analysis of variant allele frequencies supported a model of tumor growth involving slow-cycling cancer stem cells that give rise to fast-proliferating progenitor-like cells and to nondividing cells. Interestingly, radiation and antimitotic chemotherapeutics did not increase overall tumor burden upon recurrence. These findings support an important role for slow-cycling stem cell populations in contributing to recurrences, because slow-cycling cell populations are expected to be less prone to genotoxic stress induced by these treatments and therefore would accumulate few mutations. Our results highlight the need for new targeted treatments that account for the complex functional hierarchies and genomic heterogeneity of pGBM. SIGNIFICANCE: This work challenges several assumptions regarding the genetic organization of pediatric GBM and highlights mutagenic programs that start during early prenatal development.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/9/2111/F1.large.jpg.


Subject(s)
Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Glioblastoma/genetics , Mutation , Neoplasm Recurrence, Local/genetics , Neoplastic Stem Cells/metabolism , Animals , Brain Neoplasms/pathology , Child , Gene Expression Profiling , Glioblastoma/pathology , Humans , Longitudinal Studies , Mice , Neoplasm Recurrence, Local/pathology , Neoplastic Stem Cells/pathology , Tumor Cells, Cultured , Whole Genome Sequencing , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...