Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Drug Metab Dispos ; 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37793785

ABSTRACT

In the early '70s, Dr B. B. Brodie, Head of the LCP, NHI, NIH, initiated a program to elucidate the mechanism of hepatic necrosis induced in rats by bromobenzene. These studies showed a crucial role for its 3,4-epoxide intermediate, known in part, to collapse to 4-bromophenol. To examine a possible contribution of this phenol to tissue toxicity, some rats were co-administered a high dose of acetaminophen to suppress phenolic clearance by glucuronidation and sulfation. Subsequent examination of liver slices showed that the acetaminophen-only control rats had extensive centrilobular liver necrosis. This article is a personal reminiscence of the events that led up to this accidental observation, how it happened, and the subsequent resolution of the underlying mechanism, including the covalent binding of NAPQI to liver protein as the initial "hit", the glutathione protective threshold, the antidotal activity of cysteine, and the existence of the "therapeutic window" for antidotal therapy. Collectively, these studies formed the basis for antidotal therapy of acetaminophen overdose patients, Significance Statement Not applicable.

2.
Malar J ; 21(1): 33, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-35123453

ABSTRACT

BACKGROUND: Primaquine (PQ) has been used for the radical cure of relapsing Plasmodium vivax malaria for more than 60 years. PQ is also recommended for prophylaxis and prevention of transmission of Plasmodium falciparum. However, clinical utility of PQ has been limited due to toxicity in individuals with genetic deficiencies in glucose 6-phosphate dehydrogenase (G6PD). PQ is currently approved for clinical use as a racemic mixture. Recent studies in animals as well as humans have established differential pharmacological and toxicological properties of the two enantiomers of PQ. This has been attributed to differential metabolism and pharmacokinetics of individual PQ enantiomers. The aim of the current study is to evaluate the comparative pharmacokinetics (PK), tissue distribution and metabolic profiles of the individual enantiomers in mice. METHODS: Two groups of 21 male Albino ND4 Swiss mice were dosed orally with 45 mg/kg of S-(+)-PQ and R-(-)PQ respectively. Each of the enantiomers was comprised of a 50:50 mixture of 12C- and 13C- stable isotope labelled species (at 6 carbons on the benzene ring of the quinoline core). Three mice were euthanized from each group at different time points (at 0, 0.5, 1, 2, 4, 8, 24 h) and blood was collected by terminal cardiac bleed. Liver, spleen, lungs, kidneys and brain were removed, extracted and analysed using UPLC/MS. The metabolites were profiled by tandem mass (MS/MS) fragmentation profile and fragments with 12C-13C twin peaks. Non-compartmental analysis was performed using the Phoenix WinNonLin PK software module. RESULTS: The plasma AUC0-last (µg h/mL) (1.6 vs. 0.6), T1/2 (h) (1.9 vs. 0.45), and Tmax (h) (1 vs. 0.5) were greater for SPQ as compared to RPQ. Generally, the concentration of SPQ was higher in all tissues. At Tmax, (0.5-1 h in all tissues), the level of SPQ was 3 times that of RPQ in the liver. Measured Cmax of SPQ and RPQ in the liver were about 100 and 40 times the Cmax values in plasma, respectively. Similar observations were recorded in other tissues where the concentration of SPQ was higher compared to RPQ (2× in the spleen, 6× in the kidneys, and 49× in the lungs) than in the plasma. CPQ, the major metabolite, was preferentially generated from RPQ, with higher levels in all tissues (> 10× in the liver, and 3.5× in the plasma) than from SPQ. The PQ-o-quinone was preferentially formed from the SPQ (> 4× compared to RPQ), with higher concentrations in the liver. CONCLUSION: These studies show that in mice, PQ enantiomers are differentially biodistributed and metabolized, which may contribute to differential pharmacologic and toxicity profiles of PQ enantiomers. The findings on higher levels of PQ-o-quinone in liver and RBCs compared to plasma and preferential generation of this metabolite from SPQ are consistent with the higher anti-malarial efficacy of SPQ observed in the mouse causal prophylaxis test, and higher haemolytic toxicity in the humanized mouse model of G6PD deficiency. Potential relevance of these findings to clinical use of racemic PQ and other 8-aminoquinolines vis-à-vis need for further clinical evaluation of individual enantiomers are discussed.


Subject(s)
Antimalarials , Glucosephosphate Dehydrogenase Deficiency , Animals , Male , Mice , Primaquine , Tandem Mass Spectrometry , Tissue Distribution
3.
J Low Genit Tract Dis ; 26(2): 186-188, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35220345

ABSTRACT

OBJECTIVE: We present a case series of acute vulvar aphthosis immediately following COVID-19 vaccination. MATERIALS AND METHODS: We describe 3 cases of acute vulvar aphthosis following Pfizer Comirnaty BNT162b2 mRNA and AstraZeneca (Vaxzevria) ChAdOx1 nCoV-19 COVID-19 vaccination in adolescent girls. RESULTS: All patients developed vulvar aphthosis within a few days after receiving COVID-19 vaccination. The onset of vulvar aphthosis was observed to correlate with the dosing schedule known to produce the highest likelihood of adverse effects, first dose in AstraZeneca (Vaxzevria) ChAdOx1 nCoV-19 and second dose in Pfizer Comirnaty BNT162b2 mRNA COVID-19 vaccine. Two patients required oral prednisolone and hospital admission for indwelling urinary catheterization due to urinary retention. Full disease resolution with no sequalae was achieved in all three patients. CONCLUSIONS: Clinicians should be aware of the possible risk of vulvar aphthosis after COVID-19 vaccine administration. Nevertheless, its occurrence should not prevent affected patients from receiving future doses of COVID-19 vaccines, as the mortality and morbidity of COVID-19 infection significantly outweigh the risk of vulvar aphthosis recurrence.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adolescent , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , ChAdOx1 nCoV-19 , Female , Humans , SARS-CoV-2 , Vaccination
4.
Front Pharmacol ; 13: 1104735, 2022.
Article in English | MEDLINE | ID: mdl-36726785

ABSTRACT

Primaquine (PQ) is an 8-aminoquinoline antimalarial, active against dormant Plasmodium vivax hypnozoites and P. falciparum mature gametocytes. PQ is currently used for P. vivax radical cure and prevention of malaria transmission. PQ is a racemic drug and since the metabolism and pharmacology of PQ's enantiomers have been shown to be divergent, the objectives of this study were to evaluate the comparative tolerability and metabolism of PQ with respect to its two enantiomers in human volunteers in a 7 days' treatment schedule. Fifteen subjects with normal glucose-6-phosphate dehydrogenase (G6PDn) completed four arms, receiving each of the treatments, once daily for 7 days, in a crossover fashion, with a 7-14 days washout period in between: R-(-) enantiomer (RPQ) 22.5 mg; S-(+) enantiomer (SPQ) 22.5 mg; racemic PQ (RSPQ) 45 mg, and placebo. Volunteers were monitored for any adverse events (AEs) during the study period. PQ and metabolites were quantified in plasma and red blood cells (RBCs) by UHPLC-UV-MS/MS. Plasma PQ was significantly higher in SPQ treatment group than for RPQ. Carboxy-primaquine, a major plasma metabolite, was much higher in the RPQ treated group than SPQ; primaquine carbamoyl glucuronide, another major plasma metabolite, was derived only from SPQ. The ortho-quinone metabolites were also detected and showed differences for the two enantiomers in a similar pattern to the parent drugs. Both enantiomers and racemic PQ were well tolerated in G6PDn subjects with the 7 days regimen; three subjects showed mild AEs which did not require any intervention or discontinuation of the drug. The most consistent changes in G6PDn subjects were a gradual increase in methemoglobin and bilirubin, but these were not clinically important. However, the bilirubin increase suggests mild progressive damage to a small fraction of red cells. PQ enantiomers were also individually administered to two G6PD deficient (G6PDd) subjects, one heterozygous female and one hemizygous male. These G6PDd subjects showed similar results with the two enantiomers, but the responses in the hemizygous male were more pronounced. These studies suggest that although the metabolism profiles of individual PQ enantiomers are markedly different, they did not show significant differences in the safety and tolerability in G6PDn subjects.

5.
J Med Case Rep ; 14(1): 140, 2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32883339

ABSTRACT

BACKGROUND: Acute compartment syndrome is a limb-threatening and occasionally life-threatening emergency that is rarely reported as a complication following childbirth. Prompt diagnosis is crucial to avoid permanent functional restriction or even the loss of the affected limb. Clinical signs and symptoms might be nonspecific, especially in the early stages; therefore, knowledge of predisposing risk factors and signs and symptoms of acute compartment syndrome is necessary to prevent long-term complications and amputation. CASE PRESENTATION: This paper presents a case of a 26-year-old primiparous Sri Lankan woman who developed acute compartment syndrome of the lower right limb following childbirth by cesarean section. CONCLUSION: Acute compartment syndrome is an important differential diagnosis in the setting of sudden onset of lower limb pain following childbirth. Predisposing factors for its manifestation within an obstetric environment are augmented labor, the lithotomy position, postpartum hemorrhage, hypotension following epidural analgesia, and the use of vasoconstrictive agents. If left undiagnosed and untreated, acute compartment syndrome may cause permanent neurovascular deficit, leading to a poor functional result, tissue ischemia, limb amputation, and rhabdomyolysis. If severe, and in large compartments, it can lead to renal failure and death. Alertness and a high index of clinical suspicion for the possibility of acute compartment syndrome are required to avoid a delay in diagnosis, and intracompartmental pressure measurement can be used to confirm the diagnosis.


Subject(s)
Compartment Syndromes , Rhabdomyolysis , Adult , Amputation, Surgical , Cesarean Section/adverse effects , Compartment Syndromes/diagnosis , Compartment Syndromes/etiology , Female , Humans , Leg , Pregnancy
6.
Crit Rev Toxicol ; 39(9): 782-97, 2009.
Article in English | MEDLINE | ID: mdl-19852561

ABSTRACT

Trichloroethylene (TCE) is a widespread environmental contaminant that is carcinogenic when given in high, chronic doses to certain strains of mice and rats. The capacity of TCE to cause cancer in humans is less clear. The current maximum contaminant level (MCL) of 5 ppb (microg/L) is based on an US Environment Protection Agency (USEPA) policy decision rather than the underlying science. In view of major advances in understanding the etiology and mechanisms of chemically induced cancer, USEPA began in the late 1990s to revise its guidelines for cancer risk assessment. TCE was chosen as the pilot chemical. The USEPA (2005) final guidelines emphasized a "weight-of-evidence" approach with consideration of dose-response relationships, modes of action, and metabolic/toxicokinetic processes. Where adequate data are available to support reversible binding of the carcinogenic moiety to biological receptors as the initiating event (i.e., a threshold exists), a nonlinear approach is to be used. Otherwise, the default assumption of a linear (i.e., nonthreshold) dose-response is utilized. When validated physiologically based pharmacokinetic (PBPK) models are available, they are to be used to predict internal dosimetry as the basis for species and dose extrapolations. The present article reviews pertinent literature and discusses areas where research may resolve some outstanding issues and facilitate the reassessment process. Key research needs are proposed, including role of dichloroacetic acid (DCA) in TCE-induced liver tumorigenesis in humans; extension of current PBPK models to predict target organ deposition of trichloroacetic acid (TCA) and DCA in humans ingesting TCE in drinking water; use of human hepatocytes to ascertain metabolic rate constants for use in PBPK models that incorporate variability in metabolism of TCE by potentially sensitive subpopulations; measurement of the efficiency of first-pass elimination of trace levels of TCE in drinking water; and assessment of exogenous factors' (e.g., alcohol, drugs) ability to alter metabolic activation and risks at such low-level exposure.


Subject(s)
Environmental Exposure/adverse effects , Trichloroethylene/toxicity , Water Pollutants, Chemical/toxicity , Animals , Humans , Models, Biological , Neoplasms/chemically induced , Neoplasms/epidemiology , Risk Assessment , Trichloroethylene/pharmacokinetics , Water Pollutants, Chemical/pharmacokinetics
7.
Environ Health Perspect ; 114(8): 1237-42, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16882532

ABSTRACT

BACKGROUND: Trichloroethylene (TCE) is a suspected human carcinogen and a common groundwater contaminant. Chloral hydrate (CH) is the major metabolite of TCE formed in the liver by cytochrome P450 2E1. CH is metabolized to the hepatocarcinogen trichloroacetate (TCA) by aldehyde dehydrogenase (ALDH) and to the noncarcinogenic metabolite trichloroethanol (TCOH) by alcohol dehydrogenase (ADH). ALDH and ADH are polymorphic in humans, and these polymorphisms are known to affect the elimination of ethanol. It is therefore possible that polymorphisms in CH metabolism will yield subpopulations with greater than expected TCA formation with associated enhanced risk of liver tumors after TCE exposure. METHODS: The present studies were undertaken to determine the feasibility of using commercially available, cryogenically preserved human hepatocytes to determine simultaneously the kinetics of CH metabolism and ALDH/ADH genotype. Thirteen human hepatocyte samples were examined. Linear reciprocal plots were obtained for 11 ADH and 12 ALDH determinations. RESULTS: There was large interindividual variation in the Vmax values for both TCOH and TCA formation. Within this limited sample size, no correlation with ADH/ALDH genotype was apparent. Despite the large variation in Vmax values among individuals, disposition of CH into the two competing pathways was relatively constant. CONCLUSIONS: These data support the use of cryopreserved human hepatocytes as an experimental system to generate metabolic and genomic information for incorporation into TCE cancer risk assessment models. The data are discussed with regard to cellular factors, other than genotype, that may contribute to the observed variability in metabolism of CH in human liver.


Subject(s)
Chloral Hydrate/metabolism , Ethylene Chlorohydrin/analogs & derivatives , Hepatocytes/drug effects , Trichloroacetic Acid/metabolism , Trichloroacetic Acid/toxicity , Trichloroethylene/metabolism , Trichloroethylene/toxicity , Adult , Aged , Alcohol Dehydrogenase/genetics , Alcohol Dehydrogenase/metabolism , Aldehyde Dehydrogenase/genetics , Aldehyde Dehydrogenase/metabolism , Animals , Cryopreservation , Ethylene Chlorohydrin/metabolism , Ethylene Chlorohydrin/toxicity , Female , Genotype , Humans , In Vitro Techniques , Kinetics , Male , Middle Aged , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Risk Assessment , Solvents/toxicity
8.
J Pharmacol Exp Ther ; 315(3): 980-6, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16099929

ABSTRACT

Primaquine-induced hemolytic anemia is known to result from premature sequestration of damaged (but intact) erythrocytes by the spleen. We have shown previously that a phenolic metabolite, 5-hydroxyprimaquine (5-HPQ), is a direct-acting hemolytic agent in rats, suggesting that 5-HPQ is a mediator of the hemolytic response to primaquine. To investigate the fate of erythrocytes in vivo after in vitro exposure to 5-HPQ, rat (51)Cr-labeled erythrocytes were incubated with hemolytic concentrations of 5-HPQ and then readministered intravenously to rats. The time course of loss of radioactivity from blood and uptake into the spleen and liver was measured. In rats given 5-HPQ-treated erythrocytes, an increased rate of removal of radioactivity from the circulation was observed as compared with the vehicle control. The loss of blood radioactivity was accompanied by a corresponding increase in radioactivity appearing in the spleen but not in the liver. When rats were pretreated with clodronate-loaded liposomes to deplete splenic macrophages, there was a decreased rate of removal of radioactivity from the circulation and a markedly diminished uptake into the spleen. A role for phagocytic removal of 5-HPQ-treated red cells was confirmed in vitro using the J774A.1 macrophage cell line. Furthermore, depletion of red cell GSH with diethyl maleate significantly enhanced in vitro phagocytosis of 5-HPQ-treated red cells. The data indicate that splenic macrophages are responsible for removing 5-HPQ-treated red cells and support the postulate that this metabolite is a contributor to the hemolytic anemia induced after administration of the parent compound.


Subject(s)
Anemia, Hemolytic/chemically induced , Erythrocytes/drug effects , Macrophages/drug effects , Primaquine/toxicity , Spleen/metabolism , Anemia, Hemolytic/pathology , Animals , Cell Line , Erythrocytes/metabolism , Macrophages/cytology , Macrophages/metabolism , Male , Phagocytosis/drug effects , Primaquine/analogs & derivatives , Primaquine/chemistry , Rats , Rats, Sprague-Dawley
9.
Toxicol Sci ; 88(1): 274-83, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16107547

ABSTRACT

Lipid peroxidation and the accompanying translocation of phosphatidylserine (PS) from the inner to the outer leaflet of the lipid bilayer have recently been identified as key components of a signaling pathway for phagocytosis of apoptotic cells by macrophages. Drug-induced hemolytic anemia has long been known to be caused by an accelerated uptake of damaged (but intact) erythrocytes by macrophages in the spleen, and this process has been associated with enhanced formation of reactive oxygen species (ROS). However, the role of lipid peroxidation in hemolytic injury has remained unclear, and the effect of hemolytic agents on the distribution of PS in the erythrocyte membrane is unknown. The present studies were undertaken to determine whether lipid peroxidation and PS translocation could be detected in rat and human erythrocytes by three types of direct-acting hemolytic agents--dapsone hydroxylamine, divicine hydroquinone, and phenylhydrazine. 2',7'-Dichlorodihydrofluorescein diacetate was employed as a probe for intracellular ROS formation; lipid peroxidation was assessed by GC/MS analysis of F2-isoprostanes; and PS externalization was measured by annexin V labeling and the prothrombinase assay. The data confirmed that all three hemolytic agents generate ROS within erythrocytes under hemolytic conditions; however, no evidence for lipid peroxidation or PS translocation was detected. Instead, ROS production by these hemolytic agents was associated with extensive binding of oxidized and denatured hemoglobin to the membrane cytoskeleton. The data suggest that the transmembrane signal for macrophage recognition of hemolytic injury may be derived from oxidative alterations to erythrocyte proteins rather than to membrane lipids.


Subject(s)
Dapsone/analogs & derivatives , Erythrocytes/drug effects , Hemolysis/drug effects , Lipid Peroxidation/drug effects , Phenylhydrazines/toxicity , Proteins/drug effects , Pyrimidinones/toxicity , Animals , Dapsone/toxicity , Dose-Response Relationship, Drug , Erythrocytes/metabolism , Hemoglobins/metabolism , Humans , In Vitro Techniques , Lipids , Phosphatidylserines/metabolism , Proteins/metabolism , Rats , Reactive Oxygen Species/metabolism
10.
J Pharmacol Exp Ther ; 314(2): 838-45, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15840764

ABSTRACT

Primaquine-induced hemolytic anemia is a toxic side effect that is due to premature splenic sequestration of intact erythrocytes. Previous studies have suggested that a phenolic metabolite, 5-hydroxyprimaquine (5-HPQ), mediates primaquine hemotoxicity by generating reactive oxygen species (ROS) within erythrocytes that overwhelm antioxidant defenses. However, the nature of the oxidative stress is not understood, and the molecular targets, whether protein and/or lipid, are unknown. To investigate the mechanism underlying the hemolytic activity of 5-HPQ, we have examined the effect of hemolytic concentrations of 5-HPQ on ROS formation within rat erythrocytes using the cellular ROS probe, 2',7'-dichlorodihydrofluoresein diacetate. In addition, we examined the effect of 5-HPQ on membrane lipids and cytoskeletal proteins. The data indicate that 5-HPQ causes a prolonged, concentration-dependent generation of ROS within erythrocytes. Interestingly, 5-HPQ-generated ROS was not associated with the onset of lipid peroxidation or an alteration in phosphatidylserine asymmetry. Instead, 5-HPQ induced oxidative injury to the erythrocyte cytoskeleton, as evidenced by changes in the normal electrophoretic pattern of membrane ghost proteins. Immunoblotting with an anti-hemoglobin antibody revealed that these changes were due primarily to the formation of disulfide-linked hemoglobin-skeletal protein adducts. The data suggest that cytoskeletal protein damage, rather than membrane lipid peroxidation or loss of phosphatidylserine asymmetry, underlies the process of removal of erythrocytes exposed to 5-HPQ.


Subject(s)
Anemia, Hemolytic/chemically induced , Antimalarials/toxicity , Cell Membrane/metabolism , Cytoskeletal Proteins/metabolism , Lipid Peroxidation/drug effects , Primaquine/analogs & derivatives , Animals , Calcium/pharmacology , Cell Membrane/drug effects , Dithiothreitol/pharmacology , Electrophoresis, Polyacrylamide Gel , Enzyme Inhibitors/pharmacology , Erythrocyte Membrane/drug effects , Erythrocyte Membrane/metabolism , Erythrocytes/metabolism , Ethylmaleimide/pharmacology , In Vitro Techniques , Ionophores/pharmacology , Lipid Bilayers , Male , Phosphatidylserines/blood , Primaquine/toxicity , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/blood , Spleen/metabolism
11.
Toxicol Sci ; 82(2): 647-55, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15456924

ABSTRACT

Lawsone (2-hydroxy-1,4-naphthoquinone) is the active ingredient of henna (Lawsonia alba), the crushed leaves of which are used as a cosmetic dye. Application of henna can induce a severe hemolytic anemia, and lawsone is thought to be the causative agent. Administration of lawsone to rats has been shown to induce a hemolytic response that is associated with oxidative damage to erythrocytes. However, direct exposure of isolated erythrocytes to lawsone did not provoke oxidative damage, suggesting that lawsone must undergo extra-erythrocytic bioactivation in vivo. In the present study, the survival of rat 51Cr-labeled erythrocytes in vivo after in vitro exposure to lawsone and its hydroquinone form, 1,2,4-trihydroxynaphthalene (THN) has been examined. Neither lawsone nor THN were directly hemolytic or methemoglobinemic, even at high concentrations (>3 mM). Lawsone had no effect on erythrocytic GSH levels, whereas THN (3 mM) induced a modest depletion (approximately 30%). Cyclic voltammetry revealed that the lack of hemotoxicity of lawsone was associated with a poor capacity to undergo redox cycling. In contrast, ortho-substituted 1,4-naphthoquinones without a 2-hydroxy group, such as 2-methyl- and 2-methoxy-1,4-naphthoquinone, were redox active, were able to deplete GSH, and were direct-acting hemolytic agents. An oxidant stress-associated hemolytic response to lawsone could be provoked, however, if it was incubated with GSH-depleted erythrocytes. The data suggest that lawsone is a weak direct-acting hemolytic agent that does not require extra-erythrocytic metabolism to cause hemotoxicity. Thus, the hemolytic response to henna may be restricted to individuals with compromised antioxidant defenses.


Subject(s)
Anemia, Hemolytic/chemically induced , Coloring Agents/toxicity , Naphthoquinones/toxicity , Oxidative Stress/physiology , Anemia, Hemolytic/metabolism , Animals , Cell Survival/drug effects , Chromium Radioisotopes , Cytoskeletal Proteins/metabolism , Electrochemistry , Glucosephosphate Dehydrogenase Deficiency/genetics , Glutathione/metabolism , Hemolysis/drug effects , Magnetic Resonance Spectroscopy , Male , Methemoglobin/metabolism , Oxidation-Reduction , Oxidative Stress/drug effects , Pentose Phosphate Pathway/drug effects , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism
12.
Toxicology ; 197(3): 189-97, 2004 May 03.
Article in English | MEDLINE | ID: mdl-15033542

ABSTRACT

Trichloroacetate (TCA) and dichloroacetate (DCA) are hepatocarcinogenic metabolites of the environmental pollutant trichloroethylene (TCE) and are common water contaminants. Induction of peroxisome proliferation via activation of the peroxisome proliferator-activated receptor alpha (PPARalpha) has been proposed as a mechanism for their hepatocarcinogenic action. However, it is unclear whether these compounds are direct ligands of PPARalpha or whether activation occurs by a ligand-independent process. The present studies were undertaken to determine whether a primary rat hepatocyte model system could be used to examine structure-activity relationships of haloacetates for the induction of peroxisomal palmitoyl-CoA oxidation. The haloacetates tested differed in both type (iodo, bromo, chloro and fluoro) and extent (mono, di and tri) substitution. Significant differences were observed in both potency and efficacy. Potency varied over about two orders of magnitude, in the order of mono > di = tri. Within the monohalo-substituted series, the order of potency was iodo > bromo > chloro, with the fluoro analog being essentially inactive. The monoiodo- and monobromo-derivatives showed significant induction at 50 and 100 microM, respectively, but cytotoxicity precluded obtaining full concentration-response curves. The dihalo- and trihalo-acetates had generally similar potency, and, with the exception of the diflouro- and dibromoacetates, showed a maximal induction of two- to three-fold. Difluoroacetate and dibromoacetate induced palmitoyl-CoA oxidation by nine- and six-fold, respectively, approaching the effectiveness of Wy-14,643 (50 microM) in this system. Of interest, the slopes of the concentration-dependence lines of the difluoro- and dibromo-acetates were markedly dissimilar from the other di- and tri-haloacetates, suggesting either a marked difference in the way they activate the PPARalpha receptor or a substantial difference in the way they are metabolized or transported by the hepatocytes.


Subject(s)
Acetates/toxicity , Hepatocytes/drug effects , Hydrocarbons, Halogenated/toxicity , Peroxisome Proliferators/toxicity , Peroxisomes/drug effects , Animals , Blotting, Western , Cell Death/drug effects , Cell Division/drug effects , Cells, Cultured , Cytochrome P-450 CYP4A/biosynthesis , Dose-Response Relationship, Drug , Enzyme Induction/drug effects , Hepatocytes/enzymology , Hepatocytes/metabolism , Male , Oxidation-Reduction , Palmitoyl Coenzyme A/metabolism , Peroxisomes/enzymology , Peroxisomes/metabolism , Rats , Rats, Long-Evans
13.
J Pharmacol Exp Ther ; 309(1): 79-85, 2004 Apr.
Article in English | MEDLINE | ID: mdl-14724225

ABSTRACT

Primaquine is an important antimalarial agent because of its activity against exoerythrocytic forms of Plasmodium spp. Methemoglobinemia and hemolytic anemia, however, are dose-limiting side effects of primaquine therapy. These hemotoxic effects are believed to be mediated by metabolites, although the identity of the toxic specie(s) and the mechanism underlying hemotoxicity have remained unclear. Previous studies showed that an N-hydroxylated metabolite of primaquine, 6-methoxy-8-hydroxylaminoquinoline, was capable of mediating primaquine-induced hemotoxicity. The present studies were undertaken to investigate the hemolytic potential of 5-hydroxyprimaquine (5-HPQ), a phenolic metabolite that has been detected in experimental animals. 5-HPQ was synthesized, isolated by flash chromatography, and characterized by NMR spectroscopy and mass spectrometry. In vitro exposure of (51)Cr-labeled erythrocytes to 5-HPQ induced a concentration-dependent decrease in erythrocyte survival (TC(50) of ca. 40 microM) when the exposed cells were returned to the circulation of isologous rats. 5-HPQ also induced methemoglobin formation and depletion of glutathione (GSH) when incubated with suspensions of rat erythrocytes. Furthermore, when red cell GSH was depleted (>95%) by titration with diethyl maleate to mimic GSH instability in human glucose-6-phosphate dehydrogenase deficiency, a 5-fold enhancement of hemolytic activity was observed. These data indicate that 5-HPQ also has the requisite properties to contribute to the hemotoxicity of primaquine. The relative contribution of N-hydroxy versus phenolic metabolites to the overall hemotoxicity of primaquine remains to be assessed.


Subject(s)
Anemia, Hemolytic/pathology , Erythrocytes/drug effects , Primaquine/analogs & derivatives , Primaquine/pharmacology , Anemia, Hemolytic/chemically induced , Animals , Drug Stability , Electrochemistry , Erythrocytes/metabolism , Glutathione/metabolism , Hemolysis , Male , Methemoglobin/metabolism , Primaquine/chemistry , Rats , Rats, Sprague-Dawley , Sulfhydryl Compounds/metabolism
15.
J Pharmacol Exp Ther ; 303(3): 1121-9, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12438535

ABSTRACT

Primaquine is an important antimalarial drug that is often dose-limited in therapy by the onset of hemolytic anemia. We have shown recently that an N-hydroxy metabolite of primaquine, 6-methoxy-8-hydroxylaminoquinoline (MAQ-NOH), is a direct-acting hemolytic agent in rat red cells and that the hemolytic activity of this metabolite is associated with GSH oxidation and oxidative damage to both membrane lipids and skeletal proteins. To determine whether the formation of free radicals may be involved in this process, rat red cells (40% suspensions) were incubated with hemolytic concentrations of MAQ-NOH (150-750 microM) and examined by EPR spectroscopy using 2-ethoxycarbonyl-2-methyl-3,4-dihydro-2H-pyrrole-1-oxide (EMPO) as a spin trap. Addition of MAQ-NOH to red cell suspensions containing 10 mM EMPO gave rise to an EPR spectrum with hyperfine constants consistent with those of an EMPO-hydroxyl radical adduct standard. Of interest, formation of EMPO-OH was constant for up to 20 min and dependent on the presence of erythrocytic GSH. Although no other radical adduct signals were detected in the cells by EPR, spectrophotometric analysis revealed the presence of ferrylhemoglobin, which indicates that hydrogen peroxide is generated under these experimental conditions. The data support the hypothesis that oxygen-derived and possibly other free radicals are involved in the mechanism underlying MAQ-NOH-induced hemolytic anemia.


Subject(s)
Anemia, Hemolytic/blood , Anemia, Hemolytic/chemically induced , Erythrocytes/drug effects , Free Radicals/blood , Primaquine/pharmacology , Quinolines/pharmacology , Animals , Erythrocytes/metabolism , Male , Rats , Rats, Sprague-Dawley
16.
J Pharmacol Exp Ther ; 303(1): 141-8, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12235244

ABSTRACT

Previous studies have shown that 6-methoxy-8-hydroxylaminoquinoline (MAQ-NOH), an N-hydroxy metabolite of the antimalarial drug, primaquine, is a direct-acting hemolytic agent in rats. To investigate the mechanism underlying this hemolytic activity, the effects of hemotoxic concentrations of MAQ-NOH on rat erythrocyte sulfhydryl status, membrane lipids, skeletal proteins, and morphology have been examined. Treatment of rat erythrocytes with a TC(50) concentration of MAQ-NOH (350 microM) caused only a modest and transient depletion of reduced glutathione (GSH) (~30%), which was matched by modest increases in the levels of glutathione disulfide and glutathione-protein mixed disulfides. Lipid peroxidation, as measured by thiobarbituric acid-reactive substances and F(2)-isoprostane formation, was induced in a concentration-dependent manner by MAQ-NOH. However, the formation of disulfide-linked hemoglobin adducts on membrane skeletal proteins and changes in erythrocyte morphology were not observed. These data suggest that hemolytic activity results from peroxidative damage to the lipid of the red cell membrane and is not dependent on skeletal protein thiol oxidation. However, when red cell GSH was depleted (>90%) by titration with diethyl maleate, hemolytic activity of MAQ-NOH was markedly enhanced. Of interest, exacerbation of hemotoxicity was not matched by increases in lipid peroxidation, but by the appearance of hemoglobin-skeletal protein adducts. Collectively, the data are consistent with the concept that MAQ-NOH may operate by more than one mechanism; one that involves lipid peroxidation in the presence of normal amounts of erythrocytic GSH, and one that involves protein oxidation in red cells with low levels of GSH, such as are seen in individuals with glucose-6-phosphate dehydrogenase deficiency.


Subject(s)
Anemia, Hemolytic/chemically induced , Antimalarials , Cytoskeletal Proteins/blood , Erythrocyte Membrane/drug effects , Erythrocytes/physiology , Membrane Lipids/blood , Primaquine , Quinolines/pharmacology , Anemia, Hemolytic/physiopathology , Animals , Erythrocytes/drug effects , Erythrocytes/ultrastructure , Glutathione/blood , Male , Rats , Rats, Sprague-Dawley , Sulfhydryl Compounds/blood , Thiobarbituric Acid Reactive Substances/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...