Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters











Publication year range
1.
Genome Biol ; 25(1): 210, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107855

ABSTRACT

BACKGROUND: Microsatellite instability (MSI) due to mismatch repair deficiency (dMMR) is common in colorectal cancer (CRC). These cancers are associated with somatic coding events, but the noncoding pathophysiological impact of this genomic instability is yet poorly understood. Here, we perform an analysis of coding and noncoding MSI events at the different steps of colorectal tumorigenesis using whole exome sequencing and search for associated splicing events via RNA sequencing at the bulk-tumor and single-cell levels. RESULTS: Our results demonstrate that MSI leads to hundreds of noncoding DNA mutations, notably at polypyrimidine U2AF RNA-binding sites which are endowed with cis-activity in splicing, while higher frequency of exon skipping events are observed in the mRNAs of MSI compared to non-MSI CRC. At the DNA level, these noncoding MSI mutations occur very early prior to cell transformation in the dMMR colonic crypt, accounting for only a fraction of the exon skipping in MSI CRC. At the RNA level, the aberrant exon skipping signature is likely to impair colonic cell differentiation in MSI CRC affecting the expression of alternative exons encoding protein isoforms governing cell fate, while also targeting constitutive exons, making dMMR cells immunogenic in early stage before the onset of coding mutations. This signature is characterized by its similarity to the oncogenic U2AF1-S34F splicing mutation observed in several other non-MSI cancer. CONCLUSIONS: Overall, these findings provide evidence that a very early RNA splicing signature partly driven by MSI impairs cell differentiation and promotes MSI CRC initiation, far before coding mutations which accumulate later during MSI tumorigenesis.


Subject(s)
Alternative Splicing , Colorectal Neoplasms , Microsatellite Instability , Splicing Factor U2AF , Colorectal Neoplasms/genetics , Humans , Splicing Factor U2AF/genetics , Splicing Factor U2AF/metabolism , Mutation , Binding Sites , Exons
2.
J Exp Clin Cancer Res ; 43(1): 58, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38413979

ABSTRACT

BACKGROUND: Advanced prostate cancer (PC) is characterized by insensitivity to androgen deprivation therapy and chemotherapy, resulting in poor outcome for most patients. Thus, advanced PC urgently needs novel therapeutic strategies. Mounting evidence points to splicing dysregulation as a hallmark of advanced PC. Moreover, pharmacologic inhibition of the splicing process is emerging as a promising option for this disease. METHOD: By using a representative androgen-insensitive PC cell line (22Rv1), we have investigated the genome-wide transcriptomic effects underlying the cytotoxic effects exerted by three splicing-targeting drugs: Pladienolide B, indisulam and THZ531. Bioinformatic analyses were performed to uncover the gene structural features underlying sensitivity to transcriptional and splicing regulation by these treatments. Biological pathways altered by these treatments were annotated by gene ontology analyses and validated by functional experiments in cell models. RESULTS: Although eliciting similar cytotoxic effects on advanced PC cells, Pladienolide B, indisulam and THZ531 modulate specific transcriptional and splicing signatures. Drug sensitivity is associated with distinct gene structural features, expression levels and cis-acting sequence elements in the regulated exons and introns. Importantly, we identified PC-relevant genes (i.e. EZH2, MDM4) whose drug-induced splicing alteration exerts an impact on cell survival. Moreover, computational analyses uncovered a widespread impact of splicing-targeting drugs on intron retention, with enrichment in genes implicated in pre-mRNA 3'-end processing (i.e. CSTF3, PCF11). Coherently, advanced PC cells displayed high sensitivity to a specific inhibitor of the cleavage and polyadenylation complex, which enhances the effects of chemotherapeutic drugs that are already in use for this cancer. CONCLUSIONS: Our study uncovers intron retention as an actionable vulnerability for advanced PC, which may be exploited to improve therapeutic management of this currently incurable disease.


Subject(s)
Alternative Splicing , Anilides , Epoxy Compounds , Macrolides , Prostatic Neoplasms , Pyrimidines , Sulfonamides , Male , Humans , Introns , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Androgen Antagonists , Androgens , RNA Splicing , Proto-Oncogene Proteins/genetics , Cell Cycle Proteins/genetics
3.
Cell Rep ; 42(9): 113132, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37708024

ABSTRACT

Uveal melanoma (UM) is a rare cancer resulting from the transformation of melanocytes in the uveal tract. Integrative analysis has identified four molecular and clinical subsets of UM. To improve our molecular understanding of UM, we performed extensive multi-omics characterization comparing two aggressive UM patient-derived xenograft models with normal choroidal melanocytes, including DNA optical mapping, specific histone modifications, and DNA topology analysis using Hi-C. Our gene expression and cytogenetic analyses suggest that genomic instability is a hallmark of UM. We also identified a recurrent deletion in the BAP1 promoter resulting in loss of expression and associated with high risk of metastases in UM patients. Hi-C revealed chromatin topology changes associated with the upregulation of PRAME, an independent prognostic biomarker in UM, and a potential therapeutic target. Our findings illustrate how multi-omics approaches can improve our understanding of tumorigenesis and reveal two distinct mechanisms of gene expression dysregulation in UM.


Subject(s)
Melanoma , Multiomics , Humans , Melanoma/pathology , Melanocytes/metabolism , DNA , Antigens, Neoplasm/genetics
4.
Br J Cancer ; 128(5): 918-927, 2023 03.
Article in English | MEDLINE | ID: mdl-36550208

ABSTRACT

BACKGROUND: Neuroendocrine prostate cancer (NEPC) is a multi-resistant variant of prostate cancer (PCa) that has become a major challenge in clinics. Understanding the neuroendocrine differentiation (NED) process at the molecular level is therefore critical to define therapeutic strategies that can prevent multi-drug resistance. METHODS: Using RNA expression profiling and immunohistochemistry, we have identified and characterised a gene expression signature associated with the emergence of NED in a large PCa cohort, including 169 hormone-naïve PCa (HNPC) and 48 castration-resistance PCa (CRPC) patients. In vitro and preclinical in vivo NED models were used to explore the cellular mechanism and to characterise the effects of castration on PCa progression. RESULTS: We show for the first time that Neuropilin-1 (NRP1) is a key component of NED in PCa cells. NRP1 is upregulated in response to androgen deprivation therapies (ADT) and elicits cell survival through induction of the PKC pathway. Downmodulation of either NRP1 protein expression or PKC activation suppresses NED, prevents tumour evolution toward castration resistance and increases the efficacy of docetaxel-based chemotherapy in preclinical models in vivo. CONCLUSIONS: This study reveals the NRP1/PKC axis as a promising therapeutic target for the prevention of neuroendocrine castration-resistant variants of PCa and indicates NRP1 as an early transitional biomarker.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/pathology , Neuropilin-1 , Prostatic Neoplasms, Castration-Resistant/pathology , Androgen Antagonists , Drug Resistance , Cell Differentiation , Cell Line, Tumor
5.
Neurotrauma Rep ; 3(1): 105-121, 2022.
Article in English | MEDLINE | ID: mdl-35403103

ABSTRACT

To determine molecular changes that correlate with long-term physiological changes after spinal cord injury associated with spasticity, we used a complete transection model with an injury at sacral spinal level S2, wherein tail spasms develop in rats weeks to months post-injury. Using Illumina and nanopore sequencing, we found that from 12,266 expressed genes roughly 11% (1,342) change expression levels in the rats with spasticity. The transcription factor PU.1 (Spi-1 proto-oncogene) and several of its known regulated genes were upregulated during injury, possibly reflecting changes in cellular composition. In contrast to widespread changes in gene expression, only a few changes in alternative exon usage could be detected because of injury. There were more than 1,000 changes in retained intron usage, however. Unexpectedly, most of these retained introns have not been described yet but could be validated using direct RNA nanopore sequencing. In addition to changes from injury, our model allowed regional analysis of gene expression. Comparing the segments rostral and caudal to the injury site in naïve animals showed 525 differentially regulated genes and differential regional use of retained introns. We did not detect changes in the serotonin receptor 2C editing that were implicated previously in this spinal cord injury model. Our data suggest that regulation of intron retention of polyadenylated pre-mRNA is an important regulatory mechanism in the spinal cord under both physiological and pathophysiological conditions.

6.
Mol Biol Rep ; 48(10): 6729-6738, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34436724

ABSTRACT

BACKGROUND: Basal stem/progenitor cells of airway epithelium from chronic obstructive pulmonary disease (COPD) patients have a decrease in differentiation and self-renewal potential. Our study aimed at identifying deregulations in the genetic program of these cells that could account for their exhaustion, focusing on genes downstream of the epithelial-mesenchymal transition-inducing transcription factor Slug/Snail2 and responding to transforming growth factor (TGF)-ß. TGF-ß is at higher levels in COPD patient lungs, plays a role in stem/progenitor cell fate and regulates the expression of Slug/Snail2 that is highly expressed in airway basal stem/progenitors. METHODS AND RESULTS: We reanalyzed a gene expression dataset that we generated from COPD and normal primary bronchial basal progenitor cells knocked down for Slug/Snail2 gene. Among the genes that we identified to be repressed downstream of Slug/Snail2 in COPD, we selected those responding to differentiation and TGF-ß. The large majority of these genes are upregulated with differentiation but repressed by TGF-ß. Pathway and ontology enrichment analysis revealed a set of genes coding for transcription factors involved in stem cell maintenance that are repressed downstream of Slug/Snail2 and by TGF-ß in COPD but not normal basal progenitor cells. We also reveal a link between Slug/Snail2 expression and the repressive effect of TGF-ß on these stem cell maintenance genes. CONCLUSION: Our work brings a new insight and molecular perspective to the exhaustion of basal stem/progenitor cells observed in the airway epithelium of COPD patients, revealing that stem cell maintenance genes are repressed in these cells, with TGF-ß and Slug/Snail2 being involved in this deregulation.


Subject(s)
Bronchi/pathology , Epithelium/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , Snail Family Transcription Factors/metabolism , Stem Cells/metabolism , Transcription Factors/genetics , Transforming Growth Factor beta/metabolism , Female , Humans , Male , Middle Aged , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/metabolism
7.
Stem Cell Rev Rep ; 17(3): 703-718, 2021 06.
Article in English | MEDLINE | ID: mdl-33495975

ABSTRACT

Slug/Snail2 belongs to the Epithelial-Mesenchymal Transition (EMT)-inducing transcription factors involved in development and diseases. Slug is expressed in adult stem/progenitor cells of several epithelia, making it unique among these transcription factors. To investigate Slug role in human bronchial epithelium progenitors, we studied primary bronchial basal/progenitor cells in an air-liquid interface culture system that allows regenerating a bronchial epithelium. To identify Slug downstream genes we knocked down Slug in basal/progenitor cells from normal subjects and subjects with COPD, a respiratory disease presenting anomalies in the bronchial epithelium and high levels of TGF-ß in the lungs. We show that normal and COPD bronchial basal/progenitors, even when treated with TGF-ß, express both epithelial and mesenchymal markers, and that the epithelial marker E-cadherin is not a target of Slug and, moreover, positively correlates with Slug. We reveal that Slug downstream genes responding to both differentiation and TGF-ß are different in normal and COPD progenitors, with in particular a set of proliferation-related genes that are among the genes repressed downstream of Slug in normal but not COPD. In COPD progenitors at the onset of differentiation in presence of TGF-ß,we show that there is positive correlations between the effect of differentiation and TGF-ß on proliferation-related genes and on Slug protein, and that their expression levels are higher than in normal cells. As well, the expression of Smad3 and ß-Catenin, two molecules from TGF-ßsignaling pathways, are higher in COPD progenitors, and our results indicate that proliferation-related genes and Slug protein are increased by different TGF-ß-induced mechanisms.


Subject(s)
Bronchi , Pulmonary Disease, Chronic Obstructive , Snail Family Transcription Factors , Stem Cells , Transforming Growth Factor beta , Adult , Bronchi/cytology , Bronchi/drug effects , Bronchi/metabolism , Cell Proliferation , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition , Humans , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/metabolism , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism , Stem Cells/cytology , Stem Cells/drug effects , Stem Cells/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology
8.
Nat Neurosci ; 23(11): 1339-1351, 2020 11.
Article in English | MEDLINE | ID: mdl-33077946

ABSTRACT

Microglia and peripheral macrophages have both been implicated in amyotrophic lateral sclerosis (ALS), although their respective roles have yet to be determined. We now show that macrophages along peripheral motor neuron axons in mouse models and patients with ALS react to neurodegeneration. In ALS mice, peripheral myeloid cell infiltration into the spinal cord was limited and depended on disease duration. Targeted gene modulation of the reactive oxygen species pathway in peripheral myeloid cells of ALS mice, using cell replacement, reduced both peripheral macrophage and microglial activation, delayed symptoms and increased survival. Transcriptomics revealed that sciatic nerve macrophages and microglia reacted differently to neurodegeneration, with abrupt temporal changes in macrophages and progressive, unidirectional activation in microglia. Modifying peripheral macrophages suppressed proinflammatory microglial responses, with a shift toward neuronal support. Thus, modifying macrophages at the periphery has the capacity to influence disease progression and may be of therapeutic value for ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/immunology , Axons/immunology , Macrophages/immunology , Microglia/immunology , Motor Neurons/immunology , Sciatic Nerve/immunology , Adult , Aged , Amyotrophic Lateral Sclerosis/metabolism , Animals , Female , Humans , Macrophages/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Microglia/metabolism , Middle Aged , Motor Neurons/metabolism , Sciatic Nerve/metabolism , Spinal Cord/immunology , Spinal Cord/metabolism
9.
Nucleic Acids Res ; 48(2): 633-645, 2020 01 24.
Article in English | MEDLINE | ID: mdl-31777926

ABSTRACT

The Spinal Muscular Atrophy (SMA) gene SMN was recently duplicated (SMN1 and SMN2) in higher primates. Furthermore, invasion of the locus by repetitive elements almost doubled its size with respect to mouse Smn, in spite of an almost identical protein-coding sequence. Herein, we found that SMN ranks among the human genes with highest density of Alus, which are evolutionary conserved in primates and often occur in inverted orientation. Inverted repeat Alus (IRAlus) negatively regulate splicing of long introns within SMN, while promoting widespread alternative circular RNA (circRNA) biogenesis. Bioinformatics analyses revealed the presence of ultra-conserved Sam68 binding sites in SMN IRAlus. Cross-link-immunoprecipitation (CLIP), mutagenesis and silencing experiments showed that Sam68 binds in proximity of intronic Alus in the SMN pre-mRNA, thus favouring circRNA biogenesis in vitro and in vivo. These findings highlight a novel layer of regulation in SMN expression, uncover the crucial impact exerted by IRAlus and reveal a role for Sam68 in SMN circRNA biogenesis.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Alu Elements/genetics , DNA-Binding Proteins/genetics , Muscular Atrophy, Spinal/genetics , RNA, Circular/genetics , RNA-Binding Proteins/genetics , Alternative Splicing/genetics , Animals , Binding Sites/genetics , Exons/genetics , Humans , Introns/genetics , Mice , Muscular Atrophy, Spinal/pathology , RNA Precursors/genetics , SMN Complex Proteins/genetics , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 2 Protein/genetics
10.
Front Immunol ; 11: 619039, 2020.
Article in English | MEDLINE | ID: mdl-33613548

ABSTRACT

Background and Aims: Patients with cirrhosis and acute-on-chronic liver failure (ACLF) have immunosuppression, indicated by an increase in circulating immune-deficient monocytes. The aim of this study was to investigate simultaneously the major blood-immune cell subsets in these patients. Material and Methods: Blood taken from 67 patients with decompensated cirrhosis (including 35 critically ill with ACLF in the intensive care unit), and 12 healthy subjects, was assigned to either measurements of clinical blood counts and microarray (genomewide) analysis of RNA expression in whole-blood; microarray (genomewide) analysis of RNA expression in blood neutrophils; or assessment of neutrophil antimicrobial functions. Results: Several features were found in patients with ACLF and not in those without ACLF. Indeed, clinical blood count measurements showed that patients with ACLF were characterized by leukocytosis, neutrophilia, and lymphopenia. Using the CIBERSORT method to deconvolute the whole-blood RNA-expression data, revealed that the hallmark of ACLF was the association of neutrophilia with increased proportions of macrophages M0-like monocytes and decreased proportions of memory lymphocytes (of B-cell, CD4 T-cell lineages), CD8 T cells and natural killer cells. Microarray analysis of neutrophil RNA expression revealed that neutrophils from patients with ACLF had a unique phenotype including induction of glycolysis and granule genes, and downregulation of cell-migration and cell-cycle genes. Moreover, neutrophils from these patients had defective production of the antimicrobial superoxide anion. Conclusions: Genomic analysis revealed that, among patients with decompensated cirrhosis, those with ACLF were characterized by dysregulation of blood immune cells, including increases in neutrophils (that had a unique phenotype) and macrophages M0-like monocytes, and depletion of several lymphocyte subsets (including memory lymphocytes). All these lymphocyte alterations, along with defective neutrophil superoxide anion production, may contribute to immunosuppression in ACLF, suggesting targets for future therapies.


Subject(s)
Acute-On-Chronic Liver Failure/blood , Acute-On-Chronic Liver Failure/immunology , Liver Cirrhosis/blood , Liver Cirrhosis/immunology , Aged , Female , Humans , Lymphocyte Count , Macrophages , Male , Middle Aged , Neutrophils , Pilot Projects
11.
Oncoimmunology ; 8(11): e1657375, 2019.
Article in English | MEDLINE | ID: mdl-31646107

ABSTRACT

We have recently shown that chemotherapy with immunogenic cell death (ICD)-inducing agents can be advantageously combined with fasting regimens or caloric restriction mimetics (CRMs) to achieve superior tumor growth control via a T cell-dependent mechanism. Here, we show that the blockade of the CD11b-dependent extravasation of myeloid cells blocks such a combination effect as well. Based on the characterization of the myeloid and lymphoid immune infiltrates, including the expression pattern of immune checkpoint proteins (and noting a chemotherapy-induced overexpression of programmed death-ligand 1, PD-L1, on both cancer cells and leukocytes, as well as a reduced frequency of exhausted CD8+ T cells positive for programmed cell death 1 protein, PD-1), we then evaluated the possibility to combine ICD inducers, CRMs and targeting of the PD-1/PD-L1 interaction. While fasting or CRMs failed to improve tumor growth control by PD-1 blockade, ICD inducers alone achieved a partial sensitization to treatment with a PD-1-specific antibody. However, definitive cure of most of the tumor-bearing mice was only achieved by a tritherapy combining (i) ICD inducers exemplified by mitoxantrone and oxaliplatin, (ii) CRMs exemplified by hydroxycitrate and spermidine and substitutable for by fasting, and (iii) immune checkpoint inhibitors (ICIs) targeting the PD-1/PD-L1 interaction. Altogether, these results point to the possibility of synergistic interactions among distinct classes of anticancer agents.

12.
Cell Rep ; 26(11): 2929-2941.e5, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30865884

ABSTRACT

Male germ cells express the widest repertoire of transcript variants in mammalian tissues. Nevertheless, factors and mechanisms underlying such pronounced diversity are largely unknown. The splicing regulator Sam68 is highly expressed in meiotic cells, and its ablation results in defective spermatogenesis. Herein, we uncover an extensive splicing program operated by Sam68 across meiosis, primarily characterized by alternative last exon (ALE) regulation in genes of functional relevance for spermatogenesis. Lack of Sam68 preferentially causes premature transcript termination at internal polyadenylation sites, a feature observed also upon depletion of the spliceosomal U1snRNP in somatic cells. Notably, Sam68-regulated ALEs are characterized by proximity between U1snRNP and Sam68 binding motifs. We demonstrate a physical association between Sam68 and U1snRNP and show that U1snRNP recruitment to Sam68-regulated ALEs is impaired in Sam68-/- germ cells. Thus, our study reveals an unexpected cooperation between Sam68 and U1snRNP that insures proper processing of transcripts essential for male fertility.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , RNA Splicing , RNA-Binding Proteins/metabolism , Ribonucleoproteins, Small Nuclear/metabolism , Spermatogenesis , Spermatogonia/metabolism , Transcription Termination, Genetic , 3' Untranslated Regions , Adaptor Proteins, Signal Transducing/genetics , Animals , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Protein Binding , RNA-Binding Proteins/genetics , Ribonucleoproteins, Small Nuclear/genetics , Spermatogonia/cytology
13.
Dev Cell ; 41(1): 82-93.e4, 2017 04 10.
Article in English | MEDLINE | ID: mdl-28366282

ABSTRACT

Global transcriptome reprogramming during spermatogenesis ensures timely expression of factors in each phase of male germ cell differentiation. Spermatocytes and spermatids require particularly extensive reprogramming of gene expression to switch from mitosis to meiosis and to support gamete morphogenesis. Here, we uncovered an extensive alternative splicing program during this transmeiotic differentiation. Notably, intron retention was largely the most enriched pattern, with spermatocytes showing generally higher levels of retention compared with spermatids. Retained introns are characterized by weak splice sites and are enriched in genes with strong relevance for gamete function. Meiotic intron-retaining transcripts (IRTs) were exclusively localized in the nucleus. However, differently from other developmentally regulated IRTs, they are stable RNAs, showing longer half-life than properly spliced transcripts. Strikingly, fate-mapping experiments revealed that IRTs are recruited onto polyribosomes days after synthesis. These studies reveal an unexpected function for regulated intron retention in modulation of the timely expression of select transcripts during spermatogenesis.


Subject(s)
Cell Differentiation/genetics , Introns/genetics , Meiosis/genetics , Spermatozoa/cytology , Spermatozoa/metabolism , Alternative Splicing/genetics , Animals , Cell Nucleus/genetics , Gene Ontology , Male , Mice, Inbred C57BL , RNA Stability/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Regulatory Sequences, Nucleic Acid/genetics , Spermatogenesis/genetics , Transcription, Genetic , Transcriptome/genetics
14.
Nucleic Acids Res ; 44(18): 8826-8841, 2016 Oct 14.
Article in English | MEDLINE | ID: mdl-27580715

ABSTRACT

The discovery of novel specific ribosome-associated factors challenges the assumption that translation relies on standardized molecular machinery. In this work, we demonstrate that Tma108, an uncharacterized translation machinery-associated factor in yeast, defines a subpopulation of cellular ribosomes specifically involved in the translation of less than 200 mRNAs encoding proteins with ATP or Zinc binding domains. Using ribonucleoparticle dissociation experiments we established that Tma108 directly interacts with the nascent protein chain. Additionally, we have shown that translation of the first 35 amino acids of Asn1, one of the Tma108 targets, is necessary and sufficient to recruit Tma108, suggesting that it is loaded early during translation. Comparative genomic analyses, molecular modeling and directed mutagenesis point to Tma108 as an original M1 metallopeptidase, which uses its putative catalytic peptide-binding pocket to bind the N-terminus of its targets. The involvement of Tma108 in co-translational regulation is attested by a drastic change in the subcellular localization of ATP2 mRNA upon Tma108 inactivation. Tma108 is a unique example of a nascent chain-associated factor with high selectivity and its study illustrates the existence of other specific translation-associated factors besides RNA binding proteins.


Subject(s)
Aminopeptidases/metabolism , Protein Biosynthesis , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Adenosine Triphosphate/metabolism , Aminopeptidases/chemistry , In Situ Hybridization, Fluorescence , Mitochondria/genetics , Mitochondria/metabolism , Peptide Chain Elongation, Translational , Protein Binding , Proton-Translocating ATPases/genetics , RNA Transport , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Ribosomes/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Zinc/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL