Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
2.
Commun Biol ; 6(1): 429, 2023 04 19.
Article in English | MEDLINE | ID: mdl-37076532

ABSTRACT

Poly(ADP-ribosyl)ation (PARylation) is a reversible post-translational protein modification that has profound regulatory functions in metabolism, development and immunity, and is conserved throughout the eukaryotic lineage. Contrary to metazoa, many components and mechanistic details of PARylation have remained unidentified in plants. Here we present the transcriptional co-regulator RADICAL-INDUCED CELL DEATH1 (RCD1) as a plant PAR-reader. RCD1 is a multidomain protein with intrinsically disordered regions (IDRs) separating its domains. We have reported earlier that RCD1 regulates plant development and stress-tolerance by interacting with numerous transcription factors (TFs) through its C-terminal RST domain. This study suggests that the N-terminal WWE and PARP-like domains, as well as the connecting IDR play an important regulatory role for RCD1 function. We show that RCD1 binds PAR in vitro via its WWE domain and that PAR-binding determines RCD1 localization to nuclear bodies (NBs) in vivo. Additionally, we found that RCD1 function and stability is controlled by Photoregulatory Protein Kinases (PPKs). PPKs localize with RCD1 in NBs and phosphorylate RCD1 at multiple sites affecting its stability. This work proposes a mechanism for negative transcriptional regulation in plants, in which RCD1 localizes to NBs, binds TFs with its RST domain and is degraded after phosphorylation by PPKs.


Subject(s)
Poly ADP Ribosylation , Poly Adenosine Diphosphate Ribose , Poly Adenosine Diphosphate Ribose/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation
3.
Food Energy Secur ; 12(3): e459, 2023 May.
Article in English | MEDLINE | ID: mdl-38440098

ABSTRACT

Climate change poses tremendous pressure on agriculture. Camelina sativa is an ancient, low-input, high-quality oilseed crop for food, feed and industrial applications that has retained its natural stress tolerance. Its climate resilience, adaptability to different growth conditions, and the qualities of its seed oil and cake have spurred the interest in camelina. However, due to a period of neglect it has not yet undergone intensive breeding and knowledge about this multi-purpose crop is still limited. Metabolism is strongly associated with plant growth and development and little information is available on camelina primary carbohydrate metabolism. Here, eight camelina lines from different geographic and climatic regions were characterized for important growth parameters and agricultural traits. Furthermore, the activities of key enzymes of the carbohydrate metabolism were analysed in leaves, seedpods, capsules, and developing seeds. The lines differed in shoot and leaf morphology, plant height, biomass formation as well as in seed yield and seed oil and protein content. Key carbohydrate metabolism enzymes showed specific activity signatures in leaves and reproductive organs during seed development, and different lines exhibited distinct enzyme activity patterns, providing a valuable basis for developing new physiological markers for camelina breeding programs.

4.
Plant Physiol Biochem ; 183: 120-127, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35580367

ABSTRACT

Waterlogging is a serious threat to agriculture that is expected to become more common due to climate change. It is well established that many plants are susceptible to waterlogging, including crops such as rapeseed. To investigate the responses and tolerance to waterlogging of the re-emerging oilseed crop camelina (Camelina sativa), camelina lines of different geographical origins were subjected to waterlogging. Camelina was very sensitive to waterlogging at vegetative growth stages, with a relatively short treatment of 4 days proving lethal for the plants. A treatment duration of 2 days resulted in growth inhibition and lower yields and was used to study the response of 8 different camelina lines to waterlogging at two different vegetative growth stages before bolting. Generally, younger plants (7-9 leaves) were more sensitive than older plants (15-16 leaves). In addition to morphological and agronomic traits, plants were phenotyped for physiological parameters such as chlorophyll content index and total antioxidant capacity of the leaves, which showed significant age-dependent changes due to waterlogging. These results underpin that waterlogging during the vegetative phase is a serious threat to camelina, which needs to be addressed by identifying and establishing tolerance to excess water to harness camelina's potential as a climate-smart crop.


Subject(s)
Brassica napus , Brassica napus/physiology , Chlorophyll , Crops, Agricultural , Plant Leaves/physiology , Water/physiology
5.
FEBS J ; 289(2): 473-493, 2022 01.
Article in English | MEDLINE | ID: mdl-34492159

ABSTRACT

Chromatin dynamics enable the precise control of transcriptional programmes. The balance between restricting and opening of regulatory sequences on the DNA needs to be adjusted to prevailing conditions and is fine-tuned by chromatin remodelling proteins. DEK is an evolutionarily conserved chromatin architectural protein regulating important chromatin-related processes. However, the molecular link between DEK-induced chromatin reconfigurations and upstream signalling events remains unknown. Here, we show that ASKß/AtSK31 is a salt stress-activated glycogen synthase kinase 3 (GSK3) from Arabidopsis thaliana that phosphorylates DEK3. This specific phosphorylation alters nuclear DEK3 protein complex composition and affects nucleosome occupancy and chromatin accessibility that is translated into changes in gene expression, contributing to salt stress tolerance. These findings reveal that DEK3 phosphorylation is critical for chromatin function and cellular stress response and provide a mechanistic example of how GSK3-based signalling is directly linked to chromatin, facilitating a transcriptional response.


Subject(s)
Arabidopsis Proteins/metabolism , Chromatin Assembly and Disassembly/genetics , Chromosomal Proteins, Non-Histone/metabolism , Glycogen Synthase Kinase 3/genetics , Stress, Physiological/genetics , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Chromatin/genetics , Chromosomal Proteins, Non-Histone/genetics , Gene Expression Regulation, Plant/genetics , Nucleosomes/genetics , Phosphorylation/genetics , Signal Transduction/genetics , Transcription Factors/genetics
6.
Antioxidants (Basel) ; 9(9)2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32882794

ABSTRACT

Naturally derived molecules can be used as priming or defense stimulatory agents to protect against biotic stress. Fructans have gained strong interest due to their ability to induce resistance in a number of crop species. In this study, we set out to establish the role of fructan-induced immunity against the fungal pathogen Botrytis cinerea in Arabidopsis thaliana. We show that both inulin- and levan-type fructans from different sources can enhance Arabidopsis resistance against B. cinerea. We found that inulin from chicory roots and levan oligosaccharides from the exopolysaccharide-producing bacterium Halomonas smyrnensis primed the NADPH-oxidase-mediated reactive oxygen species (ROS) burst in response to the elicitors flg22, derived from the bacterial flagellum, and oligogalacturonides (OGs), derived from the host cell wall. Neither induced a direct ROS burst typical of elicitors. We also found a primed response after infection with B. cinerea for H2O2 accumulation and the activities of ascorbate peroxidase and catalase. Sucrose accumulated as a consequence of fructan priming, and glucose and sucrose levels increased in fructan-treated plants after infection with B. cinerea. This study shows that levan-type fructans, specifically from bacterial origin, can prime plant defenses and that both inulin and levan oligosaccharide-mediated priming is associated with changes in ROS dynamics and sugar metabolism. Establishing fructan-induced immunity in Arabidopsis is an important step to further study the underlying mechanisms since a broad range of biological resources are available for Arabidopsis.

7.
Plant Physiol ; 171(2): 1366-77, 2016 06.
Article in English | MEDLINE | ID: mdl-27208232

ABSTRACT

The first layer of immunity against pathogenic microbes relies on the detection of conserved pathogen-associated molecular patterns (PAMPs) that are recognized by pattern recognition receptors (PRRs) to activate pattern-triggered immunity (PTI). Despite the increasing knowledge of early PTI signaling mediated by PRRs and their associated proteins, many downstream signaling components remain elusive. Here, we identify the Arabidopsis (Arabidopsis thaliana) GLYCOGEN SYNTHASE KINASE3 (GSK3)/Shaggy-like kinase ASKα as a positive regulator of plant immune signaling. The perception of several unrelated PAMPs rapidly induced ASKα kinase activity. Loss of ASKα attenuated, whereas its overexpression enhanced, diverse PTI responses, ultimately affecting susceptibility to the bacterial pathogen Pseudomonas syringae Glucose-6-phosphate dehydrogenase (G6PD), the key enzyme of the oxidative pentose phosphate pathway, provides reducing equivalents important for defense responses and is a direct target of ASKα. ASKα phosphorylates cytosolic G6PD6 on an evolutionarily conserved threonine residue, thereby stimulating its activity. Plants deficient for or overexpressing G6PD6 showed a modified immune response, and the insensitivity of g6pd6 mutant plants to PAMP-induced growth inhibition was complemented by a phosphomimetic but not by a phosphonegative G6PD6 version. Overall, our data provide evidence that ASKα and G6PD6 constitute an immune signaling module downstream of PRRs, linking protein phosphorylation cascades to metabolic regulation.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Arabidopsis/immunology , Pathogen-Associated Molecular Pattern Molecules/pharmacology , Plant Immunity , Arabidopsis/drug effects , Chitin/pharmacology , Flagellin/pharmacology , Glucosephosphate Dehydrogenase/metabolism , Glycogen Synthase Kinase 3/metabolism , Plant Immunity/drug effects , Reactive Oxygen Species/metabolism , Threonine/metabolism
8.
Plant Cell ; 26(11): 4328-44, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25387881

ABSTRACT

Chromatin is a major determinant in the regulation of virtually all DNA-dependent processes. Chromatin architectural proteins interact with nucleosomes to modulate chromatin accessibility and higher-order chromatin structure. The evolutionarily conserved DEK domain-containing protein is implicated in important chromatin-related processes in animals, but little is known about its DNA targets and protein interaction partners. In plants, the role of DEK has remained elusive. In this work, we identified DEK3 as a chromatin-associated protein in Arabidopsis thaliana. DEK3 specifically binds histones H3 and H4. Purification of other proteins associated with nuclear DEK3 also established DNA topoisomerase 1α and proteins of the cohesion complex as in vivo interaction partners. Genome-wide mapping of DEK3 binding sites by chromatin immunoprecipitation followed by deep sequencing revealed enrichment of DEK3 at protein-coding genes throughout the genome. Using DEK3 knockout and overexpressor lines, we show that DEK3 affects nucleosome occupancy and chromatin accessibility and modulates the expression of DEK3 target genes. Furthermore, functional levels of DEK3 are crucial for stress tolerance. Overall, data indicate that DEK3 contributes to modulation of Arabidopsis chromatin structure and function.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Chromatin/genetics , Gene Expression Regulation, Plant , Nucleosomes/metabolism , Amino Acid Sequence , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Calpain/genetics , Calpain/metabolism , Chromatin/physiology , Chromatin/ultrastructure , Histones/metabolism , Molecular Sequence Data , Mutation , Protein Structure, Tertiary , Recombinant Proteins , Sequence Alignment , Stress, Physiological
9.
Cell Host Microbe ; 16(3): 376-90, 2014 Sep 10.
Article in English | MEDLINE | ID: mdl-25211079

ABSTRACT

Nonsense-mediated mRNA decay (NMD) is a conserved eukaryotic RNA surveillance mechanism that degrades aberrant mRNAs. NMD impairment in Arabidopsis is linked to constitutive immune response activation and enhanced antibacterial resistance, but the underlying mechanisms are unknown. Here we show that NMD contributes to innate immunity in Arabidopsis by controlling the turnover of numerous TIR domain-containing, nucleotide-binding, leucine-rich repeat (TNL) immune receptor-encoding mRNAs. Autoimmunity resulting from NMD impairment depends on TNL signaling pathway components and can be triggered through deregulation of a single TNL gene, RPS6. Bacterial infection of plants causes host-programmed inhibition of NMD, leading to stabilization of NMD-regulated TNL transcripts. Conversely, constitutive NMD activity prevents TNL stabilization and impairs plant defense, demonstrating that host-regulated NMD contributes to disease resistance. Thus, NMD shapes plant innate immunity by controlling the threshold for activation of TNL resistance pathways.


Subject(s)
Arabidopsis/genetics , Nonsense Mediated mRNA Decay , Pseudomonas syringae/physiology , Receptors, Immunologic/genetics , Receptors, Immunologic/immunology , Arabidopsis/immunology , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/immunology , Carrier Proteins/genetics , Carrier Proteins/immunology , Codon, Nonsense , Host-Pathogen Interactions , Plant Diseases/genetics , Plant Diseases/immunology , Plant Diseases/microbiology , Pseudomonas syringae/genetics , RNA Helicases/genetics , RNA Helicases/immunology , RNA, Messenger/genetics , RNA, Messenger/immunology
10.
BMC Plant Biol ; 14: 172, 2014 Jun 19.
Article in English | MEDLINE | ID: mdl-24947596

ABSTRACT

BACKGROUND: Plant GSK-3/Shaggy-like kinases are key players in brassinosteroid (BR) signalling which impact on plant development and participate in response to wounding, pathogens and salt stress. Bikinin was previously identified in a chemical genetics screen as an inhibitor targeting these kinases. To dissect the structural elements crucial for inhibition of GSK-3/Shaggy-like kinases by bikinin and to isolate more potent compounds we synthesised a number of related substances and tested their inhibitory activity in vitro and in vivo using Arabidopsis thaliana. RESULTS: A pyridine ring with an amido succinic acid residue in position 2 and a halogen in position 5 were crucial for inhibitory activity. The compound with an iodine substituent in position 5, denoted iodobikinin, was most active in inhibiting BIN2 activity in vitro and efficiently induced brassinosteroid-like responses in vivo. Its methyl ester, methyliodobikinin, showed improved cell permeability, making it highly potent in vivo although it had lower activity in vitro. HPLC analysis revealed that the methyl residue was rapidly cleaved off in planta liberating active iodobikinin. In addition, we provide evidence that iodobikinin and bikinin are inactivated in planta by conjugation with glutamic acid or malic acid and that the latter process is catalysed by the malate transferase SNG1. CONCLUSION: Brassinosteroids participate in regulation of many aspects of plant development and in responses to environmental cues. Thus compounds modulating their action are valuable tools to study such processes and may be an interesting opportunity to modify plant growth and performance in horticulture and agronomy. Here we report the development of bikinin derivatives with increased potency that can activate BR signalling and mimic BR action. Methyliodobikinin was 3.4 times more active in vivo than bikinin. The main reason for the superior activity of methyliodobikinin, the most potent compound, is its enhanced plant tissue permeability. Inactivation of bikinin and its derivatives in planta involves SNG1, which constitutes a novel pathway for modification of xenobiotic compounds.


Subject(s)
Aminopyridines/metabolism , Aminopyridines/pharmacology , Arabidopsis/enzymology , Glycogen Synthase Kinase 3/antagonists & inhibitors , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Succinates/metabolism , Succinates/pharmacology , Aminopyridines/chemistry , Arabidopsis/drug effects , Arabidopsis Proteins/metabolism , Biocatalysis/drug effects , Glycogen Synthase Kinase 3/metabolism , Hydrolysis/drug effects , Hypocotyl/drug effects , Hypocotyl/growth & development , Malates/metabolism , Mass Spectrometry , Methylation/drug effects , Permeability/drug effects , Protein Kinase Inhibitors/chemistry , Protoplasts/drug effects , Protoplasts/metabolism , Reference Standards , Signal Transduction/drug effects , Spectrophotometry, Ultraviolet , Succinates/chemistry
11.
Antioxid Redox Signal ; 21(9): 1289-304, 2014 Sep 20.
Article in English | MEDLINE | ID: mdl-24800789

ABSTRACT

AIMS: High salinity stress impairs plant growth and development. Trehalose metabolism has been implicated in sugar signaling, and enhanced trehalose metabolism can positively regulate abiotic stress tolerance. However, the molecular mechanism(s) of the stress-related trehalose pathway and the role of individual trehalose biosynthetic enzymes for stress tolerance remain unclear. RESULTS: Trehalose-6-phosphate phosphatase (TPP) catalyzes the final step of trehalose metabolism. Investigating the subcellular localization of the Arabidopsis thaliana TPP family members, we identified AtTPPD as a chloroplast-localized enzyme. Plants deficient in AtTPPD were hypersensitive, whereas plants overexpressing AtTPPD were more tolerant to high salinity stress. Elevated stress tolerance of AtTPPD overexpressors correlated with high starch levels and increased accumulation of soluble sugars, suggesting a role for AtTPPD in regulating sugar metabolism under salinity conditions. Biochemical analyses indicate that AtTPPD is a target of post-translational redox regulation and can be reversibly inactivated by oxidizing conditions. Two cysteine residues were identified as the redox-sensitive sites. Structural and mutation analyses suggest that the formation of an intramolecular disulfide bridge regulates AtTPPD activity. INNOVATION: The activity of different AtTPP isoforms, located in the cytosol, nucleus, and chloroplasts, can be redox regulated, suggesting that the trehalose metabolism might relay the redox status of different cellular compartments to regulate diverse biological processes such as stress responses. CONCLUSION: The evolutionary conservation of the two redox regulatory cysteine residues of TPPs in spermatophytes indicates that redox regulation of TPPs might be a common mechanism enabling plants to rapidly adjust trehalose metabolism to the prevailing environmental and developmental conditions.


Subject(s)
Chloroplasts/enzymology , Phosphoric Monoester Hydrolases/metabolism , Stress, Physiological , Arabidopsis/drug effects , Arabidopsis/enzymology , Arabidopsis/metabolism , Chloroplasts/drug effects , Gene Expression Regulation, Plant/drug effects , Oxidation-Reduction/drug effects , Sodium Chloride/pharmacology
12.
J Exp Bot ; 65(9): 2335-50, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24648569

ABSTRACT

Dual-specificity mitogen-activated protein kinases kinases (MAPKKs) are the immediate upstream activators of MAPKs. They simultaneously phosphorylate the TXY motif within the activation loop of MAPKs, allowing them to interact with and regulate multiple substrates. Often, the activation of MAPKs triggers their nuclear translocation. However, the spatiotemporal dynamics and the physiological consequences of the activation of MAPKs, particularly in plants, are still poorly understood. Here, we studied the activation and localization of the Medicago sativa stress-induced MAPKK (SIMKK)-SIMK module after salt stress. In the inactive state, SIMKK and SIMK co-localized in the cytoplasm and in the nucleus. Upon salt stress, however, a substantial part of the nuclear pool of both SIMKK and SIMK relocated to cytoplasmic compartments. The course of nucleocytoplasmic shuttling of SIMK correlated temporally with the dual phosphorylation of the pTEpY motif. SIMKK function was further studied in Arabidopsis plants overexpressing SIMKK-yellow fluorescent protein (YFP) fusions. SIMKK-YFP plants showed enhanced activation of Arabidopsis MPK3 and MPK6 kinases upon salt treatment and exhibited high sensitivity against salt stress at the seedling stage, although they were salt insensitive during seed germination. Proteomic analysis of SIMKK-YFP overexpressors indicated the differential regulation of proteins directly or indirectly involved in salt stress responses. These proteins included catalase, peroxiredoxin, glutathione S-transferase, nucleoside diphosphate kinase 1, endoplasmic reticulum luminal-binding protein 2, and finally plasma membrane aquaporins. In conclusion, Arabidopsis seedlings overexpressing SIMKK-YFP exhibited higher salt sensitivity consistent with their proteome composition and with the presumptive MPK3/MPK6 hijacking of the salt response pathway.


Subject(s)
Arabidopsis/metabolism , Medicago sativa/enzymology , Mitogen-Activated Protein Kinase Kinases/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Enzyme Activation , Gene Expression , Medicago sativa/genetics , Mitogen-Activated Protein Kinase Kinases/genetics , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Protein Transport , Salts/metabolism , Seedlings/genetics , Seedlings/growth & development , Seedlings/metabolism
13.
Mol Plant ; 6(2): 396-410, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23376771

ABSTRACT

Heat stress affects epigenetic gene silencing in Arabidopsis. To test for a mechanistic involvement of epigenetic regulation in heat-stress responses, we analyzed the heat tolerance of mutants defective in DNA methylation, histone modifications, chromatin-remodeling, or siRNA-based silencing pathways. Plants deficient in NRPD2, the common second-largest subunit of RNA polymerases IV and V, and in the Rpd3-type histone deacetylase HDA6 were hypersensitive to heat exposure. Microarray analysis demonstrated that NRPD2 and HDA6 have independent roles in transcriptional reprogramming in response to temperature stress. The misexpression of protein-coding genes in nrpd2 mutants recovering from heat correlated with defective epigenetic regulation of adjacent transposon remnants which involved the loss of control of heat-stress-induced read-through transcription. We provide evidence that the transcriptional response to temperature stress, at least partially, relies on the integrity of the RNA-dependent DNA methylation pathway.


Subject(s)
Arabidopsis/genetics , Arabidopsis/physiology , DNA Methylation/genetics , Hot Temperature , RNA, Plant/genetics , Arabidopsis/enzymology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , DNA Transposable Elements/genetics , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Epigenesis, Genetic , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Mutation , Plant Proteins/genetics , Up-Regulation
14.
J Biol Chem ; 288(11): 7519-7527, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23341468

ABSTRACT

Brassinosteroids (BRs) are steroid hormones that coordinate fundamental developmental programs in plants. In this study we show that in addition to the well established roles of BRs in regulating cell elongation and cell division events, BRs also govern cell fate decisions during stomata development in Arabidopsis thaliana. In wild-type A. thaliana, stomatal distribution follows the one-cell spacing rule; that is, adjacent stomata are spaced by at least one intervening pavement cell. This rule is interrupted in BR-deficient and BR signaling-deficient A. thaliana mutants, resulting in clustered stomata. We demonstrate that BIN2 and its homologues, GSK3/Shaggy-like kinases involved in BR signaling, can phosphorylate the MAPK kinases MKK4 and MKK5, which are members of the MAPK module YODA-MKK4/5-MPK3/6 that controls stomata development and patterning. BIN2 phosphorylates a GSK3/Shaggy-like kinase recognition motif in MKK4, which reduces MKK4 activity against its substrate MPK6 in vitro. In vivo we show that MKK4 and MKK5 act downstream of BR signaling because their overexpression rescued stomata patterning defects in BR-deficient plants. A model is proposed in which GSK3-mediated phosphorylation of MKK4 and MKK5 enables for a dynamic integration of endogenous or environmental cues signaled by BRs into cell fate decisions governed by the YODA-MKK4/5-MPK3/6 module.


Subject(s)
Arabidopsis/metabolism , Brassinosteroids/metabolism , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Glycogen Synthase Kinase 3/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Plant Stomata/metabolism , Cloning, Molecular , Escherichia coli/metabolism , Glutathione Transferase/metabolism , Models, Biological , Models, Genetic , Phosphorylation , Plants, Genetically Modified , Recombinant Proteins/metabolism , Signal Transduction , Steroids/metabolism
15.
Plant Cell ; 24(8): 3380-92, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22885737

ABSTRACT

Diverse stresses such as high salt conditions cause an increase in reactive oxygen species (ROS), necessitating a redox stress response. However, little is known about the signaling pathways that regulate the antioxidant system to counteract oxidative stress. Here, we show that a Glycogen Synthase Kinase3 from Arabidopsis thaliana (ASKα) regulates stress tolerance by activating Glc-6-phosphate dehydrogenase (G6PD), which is essential for maintaining the cellular redox balance. Loss of stress-activated ASKα leads to reduced G6PD activity, elevated levels of ROS, and enhanced sensitivity to salt stress. Conversely, plants overexpressing ASKα have increased G6PD activity and low levels of ROS in response to stress and are more tolerant to salt stress. ASKα stimulates the activity of a specific cytosolic G6PD isoform by phosphorylating the evolutionarily conserved Thr-467, which is implicated in cosubstrate binding. Our results reveal a novel mechanism of G6PD adaptive regulation that is critical for the cellular stress response.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Gene Expression Regulation, Plant , Glucosephosphate Dehydrogenase/metabolism , Oxidative Stress , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Binding Sites , Cell Culture Techniques/methods , Culture Media/metabolism , Enzyme Activation , Gene Expression Regulation, Enzymologic , Germination , Glucosephosphate Dehydrogenase/genetics , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/metabolism , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Oxidation-Reduction , Phosphorylation , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/genetics , Reactive Oxygen Species/metabolism , Salt-Tolerant Plants/enzymology , Salt-Tolerant Plants/genetics , Signal Transduction , Sodium Chloride , Threonine/metabolism
16.
Nat Cell Biol ; 14(5): 548-54, 2012 Apr 01.
Article in English | MEDLINE | ID: mdl-22466366

ABSTRACT

Stomatal formation is regulated by multiple developmental and environmental signals, but how these signals are integrated to control this process is not fully understood. In Arabidopsis thaliana, the basic helix-loop-helix transcription factor SPEECHLESS (SPCH) regulates the entry, amplifying and spacing divisions that occur during stomatal lineage development. SPCH activity is negatively regulated by mitogen-activated protein kinase (MAPK)-mediated phosphorylation. Here, we show that in addition to MAPKs, SPCH activity is also modulated by brassinosteroid (BR) signalling. The GSK3/SHAGGY-like kinase BIN2 (BR INSENSITIVE2) phosphorylates residues overlapping those targeted by the MAPKs, as well as four residues in the amino-terminal region of the protein outside the MAPK target domain. These phosphorylation events antagonize SPCH activity and limit epidermal cell proliferation. Conversely, inhibition of BIN2 activity in vivo stabilizes SPCH and triggers excessive stomatal and non-stomatal cell formation. We demonstrate that through phosphorylation inputs from both MAPKs and BIN2, SPCH serves as an integration node for stomata and BR signalling pathways to control stomatal development in Arabidopsis.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/metabolism , Basic Helix-Loop-Helix Transcription Factors/physiology , Brassinosteroids/metabolism , Plant Stomata/metabolism , Signal Transduction , Mitogen-Activated Protein Kinases/metabolism , Phosphorylation
17.
Nucleic Acids Res ; 40(12): 5615-24, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22379136

ABSTRACT

Nonsense-mediated RNA decay (NMD) is an evolutionarily conserved RNA quality control mechanism that eliminates transcripts containing nonsense mutations. NMD has also been shown to affect the expression of numerous genes, and inactivation of this pathway is lethal in higher eukaryotes. However, despite relatively detailed knowledge of the molecular basis of NMD, our understanding of its physiological functions is still limited and the underlying causes of lethality are unknown. In this study, we examined the importance of NMD in plants by analyzing an allelic series of Arabidopsis thaliana mutants impaired in the core NMD components SMG7 and UPF1. We found that impaired NMD elicits a pathogen defense response which appears to be proportional to the extent of NMD deficiency. We also demonstrate that developmental aberrations and lethality of the strong smg7 and upf1 alleles are caused by constitutive pathogen response upregulation. Disruption of pathogen signaling suppresses the lethality of the upf1-3 null allele and growth defects associated with SMG7 dysfunction. Interestingly, infertility and abortive meiosis observed in smg7 mutants is not coupled with impaired NMD suggesting a broader function of SMG7 in cellular metabolism. Taken together, our results uncover a major physiological consequence of NMD deficiency in Arabidopsis and revealed multifaceted roles of SMG7 in plant growth and development.


Subject(s)
Arabidopsis/genetics , Nonsense Mediated mRNA Decay , Arabidopsis/growth & development , Arabidopsis/immunology , Arabidopsis Proteins/genetics , Autoimmunity , Carrier Proteins/genetics , Mutation , Plant Infertility/genetics , RNA Helicases/genetics , Signal Transduction
18.
J Exp Bot ; 63(4): 1593-608, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22291134

ABSTRACT

Plants regularly face adverse growth conditions, such as drought, salinity, chilling, freezing, and high temperatures. These stresses can delay growth and development, reduce productivity, and, in extreme cases, cause plant death. Plant stress responses are dynamic and involve complex cross-talk between different regulatory levels, including adjustment of metabolism and gene expression for physiological and morphological adaptation. In this review, information about metabolic regulation in response to drought, extreme temperature, and salinity stress is summarized and the signalling events involved in mediating stress-induced metabolic changes are presented.


Subject(s)
Plants/metabolism , Stress, Physiological/physiology , Water/metabolism , Adaptation, Physiological , Dehydration , Plant Physiological Phenomena , Salinity , Signal Transduction , Sodium Chloride , Stress, Physiological/genetics , Temperature
19.
Biochim Biophys Acta ; 1809(8): 459-68, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21515434

ABSTRACT

Interest in transgenerational epigenetic inheritance has intensified with the boosting of knowledge on epigenetic mechanisms regulating gene expression during development and in response to internal and external signals such as biotic and abiotic stresses. Starting with an historical background of scantily documented anecdotes and their consequences, we recapitulate the information gathered during the last 60 years on naturally occurring and induced epialleles and paramutations in plants. We present the major players of epigenetic regulation and their importance in controlling stress responses. The effect of diverse stressors on the epigenetic status and its transgenerational inheritance is summarized from a mechanistic viewpoint. The consequences of transgenerational epigenetic inheritance are presented, focusing on the knowledge about its stability, and in relation to genetically fixed mutations, recombination, and genomic rearrangement. We conclude with an outlook on the importance of transgenerational inheritance for adaptation to changing environments and for practical applications. This article is part of a Special Issue entitled "Epigenetic control of cellular and developmental processes in plants".


Subject(s)
Epigenesis, Genetic , Plants/genetics , Acclimatization/genetics , Adaptation, Physiological/genetics , DNA Methylation , Epigenomics/history , Genome, Plant , Histones/genetics , Histones/metabolism , History, 20th Century , History, 21st Century , Mutation , Plant Development , Plants/metabolism , Stress, Physiological
20.
Mol Plant ; 3(3): 594-602, 2010 May.
Article in English | MEDLINE | ID: mdl-20410255

ABSTRACT

Plants, as sessile organisms, need to sense and adapt to heterogeneous environments and have developed sophisticated responses by changing their cellular physiology, gene regulation, and genome stability. Recent work demonstrated heritable stress effects on the control of genome stability in plants--a phenomenon that was suggested to be of epigenetic nature. Here, we show that temperature and UV-B stress cause immediate and heritable changes in the epigenetic control of a silent reporter gene in Arabidopsis. This stress-mediated release of gene silencing correlated with pronounced alterations in histone occupancy and in histone H3 acetylation but did not involve adjustments in DNA methylation. We observed transmission of stress effects on reporter gene silencing to non-stressed progeny, but this effect was restricted to areas consisting of a small number of cells and limited to a few non-stressed progeny generations. Furthermore, stress-induced release of gene silencing was antagonized and reset during seed aging. The transient nature of this phenomenon highlights the ability of plants to restrict stress-induced relaxation of epigenetic control mechanisms, which likely contributes to safeguarding genome integrity.


Subject(s)
Arabidopsis/genetics , Arabidopsis/metabolism , Epigenesis, Genetic/genetics , Acetylation , Chromatin/genetics , Chromatin/metabolism , DNA Methylation/physiology , Gene Silencing/physiology , Histones/metabolism , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...