Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Pediatr ; 23(1): 353, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37443020

ABSTRACT

BACKGROUND: LPS-responsive beige-like anchor protein (LRBA) deficiency is a primary immunodeficiency disease (PID) characterized by a regulatory T cell defect resulting in immune dysregulation and autoimmunity. We present two siblings born to consanguineous parents of North African descent with LRBA deficiency and central nervous system (CNS) manifestations. As no concise overview of these manifestations is available in literature, we compared our patient's presentation with a reviewed synthesis of the available literature. CASE PRESENTATIONS: The younger brother presented with enteropathy at age 1.5 years, and subsequently developed Evans syndrome and diabetes mellitus. These autoimmune manifestations led to the genetic diagnosis of LRBA deficiency through whole exome sequencing with PID gene panel. At 11 years old, he had two tonic-clonic seizures. Brain MRI showed multiple FLAIR-hyperintense lesions and a T2-hyperintense lesion of the cervical medulla.  His sister presented with immune cytopenia at age 9 years, and developed diffuse lymphadenopathy and interstitial lung disease. Genetic testing confirmed the same mutation as her brother. At age 13 years, a brain MRI showed multiple T2-FLAIR-hyperintense lesions. She received an allogeneic hematopoietic stem cell transplantation (allo-HSCT) 3 months later. Follow-up MRI showed regression of these lesions. CONCLUSIONS: Neurological disease is documented in up to 25% of patients with LRBA deficiency. Manifestations range from cerebral granulomas to acute disseminating encephalomyelitis, but detailed descriptions of neurological and imaging phenotypes are lacking. LRBA deficiency amongst other PIDs should be part of the differential diagnosis in patients with inflammatory brain lesions. We strongly advocate for a more detailed description of CNS manifestations in patients with LRBA deficiency, when possible with MR imaging. This will aid clinical decision concerning both anti-infectious and anti-inflammatory therapy and in considering the indication for allo-HSCT.


Subject(s)
Anemia, Hemolytic, Autoimmune , Siblings , Male , Female , Humans , Autoimmunity , Mutation , Central Nervous System , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism
2.
J Med Genet ; 45(3): 129-33, 2008 Mar.
Article in English | MEDLINE | ID: mdl-17954552

ABSTRACT

PURPOSE: To identify the biochemical and molecular genetic defect in a 16-year-old patient presenting with apical hypertrophic cardiomyopathy and neuropathy suspected for a mitochondrial disorder. METHODS: Measurement of the mitochondrial energy-generating system (MEGS) capacity in muscle and enzyme analysis in muscle and fibroblasts were performed. Relevant parts of the mitochondrial DNA were analysed by sequencing. Transmitochondrial cybrids were obtained by fusion of 143B206 TK(-) rho zero cells with patient-derived enucleated fibroblasts. Immunoblotting techniques were applied to study the complex V assembly. RESULTS: A homoplasmic nonsense mutation m.8529G-->A (p.Trp55X) was found in the mitochondrial ATP8 gene in the patient's fibroblasts and muscle tissue. Reduced complex V activity was measured in the patient's fibroblasts and muscle tissue, and was confirmed in cybrid clones containing patient-derived mitochondrial DNA. Immunoblotting after blue native polyacrylamide gel electrophoresis showed a lack of holocomplex V and increased amounts of mitochondrial ATP synthase subcomplexes. An in-gel activity assay of ATP hydrolysis showed activity of free F(1)-ATPase in the patient's muscle tissue and in the cybrid clones. CONCLUSION: We describe the first pathogenic mutation in the mitochondrial ATP8 gene, resulting in an improper assembly and reduced activity of the complex V holoenzyme.


Subject(s)
Cardiomyopathy, Hypertrophic/enzymology , Cardiomyopathy, Hypertrophic/genetics , Codon, Nonsense , Genes, Mitochondrial , Mitochondrial Proton-Translocating ATPases/deficiency , Mitochondrial Proton-Translocating ATPases/genetics , Nervous System Diseases/enzymology , Nervous System Diseases/genetics , Adolescent , Amino Acid Sequence , Base Sequence , DNA Primers/genetics , Humans , Hybrid Cells , Male , Mitochondrial Diseases/enzymology , Mitochondrial Diseases/genetics , Mitochondrial Proton-Translocating ATPases/chemistry , Molecular Sequence Data , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...