Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Life Sci Alliance ; 7(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38575358

ABSTRACT

For establishing sister chromatid cohesion and proper chromosome segregation in mitosis in fission yeast, the acetyltransferase Eso1 plays a key role. Eso1 acetylates cohesin complexes, at two conserved lysine residues K105 and K106 of the cohesin subunit Psm3. Although Eso1 also contributes to reductional chromosome segregation in meiosis, the underlying molecular mechanisms have remained elusive. Here, we purified meiosis-specific Rec8 cohesin complexes localized at centromeres and identified a new acetylation at Psm3-K1013, which largely depends on the meiotic kinetochore factor meikin (Moa1). Our molecular genetic analyses indicate that Psm3-K1013 acetylation cooperates with canonical acetylation at Psm3-K105 and K106, and plays a crucial role in establishing reductional chromosome segregation in meiosis.


Subject(s)
Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Cohesins , Chromosome Segregation/genetics , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Acetylation , Meiosis/genetics , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism
2.
Cell ; 186(24): 5254-5268.e26, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37944513

ABSTRACT

A fundamental feature of cellular growth is that total protein and RNA amounts increase with cell size to keep concentrations approximately constant. A key component of this is that global transcription rates increase in larger cells. Here, we identify RNA polymerase II (RNAPII) as the limiting factor scaling mRNA transcription with cell size in budding yeast, as transcription is highly sensitive to the dosage of RNAPII but not to other components of the transcriptional machinery. Our experiments support a dynamic equilibrium model where global RNAPII transcription at a given size is set by the mass action recruitment kinetics of unengaged nucleoplasmic RNAPII to the genome. However, this only drives a sub-linear increase in transcription with size, which is then partially compensated for by a decrease in mRNA decay rates as cells enlarge. Thus, limiting RNAPII and feedback on mRNA stability work in concert to scale mRNA amounts with cell size.


Subject(s)
Cell Size , RNA Polymerase II , Transcription, Genetic , Feedback , RNA Polymerase II/metabolism , RNA Stability , RNA, Messenger/genetics , RNA, Messenger/metabolism
3.
Mol Ecol ; 32(12): 3290-3307, 2023 06.
Article in English | MEDLINE | ID: mdl-36974685

ABSTRACT

Seasonal migration of Nearctic-Neotropical passerine birds may have profound effects on the diversity and abundance of their host-associated microbiota. Migratory birds experience seasonal change in environments and diets throughout the course of the annual cycle that, along with recurrent biological events such as reproduction, may significantly impact their microbiota. In this study, we characterize the intestinal microbiota of four closely related species of migratory Catharus thrushes at three time points of their migratory cycle: during spring migration, on the summer breeding territories and during fall migration. Using observations replicated over 3 years, we determined that microbial community diversity of Catharus thrushes was significantly different across distinct time periods of the annual cycle, whereas community composition was more similar within than across years. Elevated alpha diversity in the summer birds compared to either migratory period indicated that birds may harbour a reduced microbiota during active migration. We also found that community composition of the microbiota did not substantially differ between host species. Finally, we recovered two phyla, Cyanobacteria and Planctomycetota, which are not commonly described from birds, that were in relatively high abundance in specific years. This study contributes to our growing understanding of how microbiota in wild birds vary throughout disparate ecological conditions and reveals potential axes across which an animal's microbial flexibility adapts to variable environments and recurrent biological conditions throughout the annual cycle.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Songbirds , Animals , Seasons , Gastrointestinal Microbiome/genetics , Animal Migration
4.
Proc Biol Sci ; 290(1991): 20221334, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36695033

ABSTRACT

Pleistocene climate cycles are well documented to have shaped contemporary species distributions and genetic diversity. Northward range expansions in response to deglaciation following the Last Glacial Maximum (LGM; approximately 21 000 years ago) are surmised to have led to population size expansions in terrestrial taxa and changes in seasonal migratory behaviour. Recent findings, however, suggest that some northern temperate populations may have been more stable than expected through the LGM. We modelled the demographic history of 19 co-distributed boreal-breeding North American bird species from full mitochondrial gene sets and species-specific molecular rates. We used these demographic reconstructions to test how species with different migratory strategies were affected by glacial cycles. Our results suggest that effective population sizes increased in response to Pleistocene deglaciation earlier than the LGM, whereas genetic diversity was maintained throughout the LGM despite shifts in geographical range. We conclude that glacial cycles prior to the LGM have most strongly shaped contemporary genetic diversity in these species. We did not find a relationship between historic population dynamics and migratory strategy, contributing to growing evidence that major switches in migratory strategy during the LGM are unnecessary to explain contemporary migratory patterns.


Subject(s)
Birds , Genetic Variation , Animals , Population Density , Birds/genetics , Population Dynamics , Geography , North America , Phylogeography , Phylogeny , DNA, Mitochondrial/genetics
5.
Nature ; 607(7918): 381-386, 2022 07.
Article in English | MEDLINE | ID: mdl-35676478

ABSTRACT

Cyclin-dependent kinases (CDKs) lie at the heart of eukaryotic cell cycle control, with different cyclin-CDK complexes initiating DNA replication (S-CDKs) and mitosis (M-CDKs)1,2. However, the principles on which cyclin-CDK complexes organize the temporal order of cell cycle events are contentious3. One model proposes that S-CDKs and M-CDKs are functionally specialized, with substantially different substrate specificities to execute different cell cycle events4-6. A second model proposes that S-CDKs and M-CDKs are redundant with each other, with both acting as sources of overall CDK activity7,8. In this model, increasing CDK activity, rather than CDK substrate specificity, orders cell cycle events9,10. Here we reconcile these two views of core cell cycle control. Using phosphoproteomic assays of in vivo CDK activity in fission yeast, we find that S-CDK and M-CDK substrate specificities are remarkably similar, showing that S-CDKs and M-CDKs are not completely specialized for S phase and mitosis alone. Normally, S-CDK cannot drive mitosis but can do so when protein phosphatase 1 is removed from the centrosome. Thus, increasing S-CDK activity in vivo is sufficient to overcome substrate specificity differences between S-CDK and M-CDK, and allows S-CDK to carry out M-CDK function. Therefore, we unite the two opposing views of cell cycle control, showing that the core cell cycle engine is largely based on a quantitative increase in CDK activity through the cell cycle, combined with minor and surmountable qualitative differences in catalytic specialization of S-CDKs and M-CDKs.


Subject(s)
Cell Cycle , Cyclin-Dependent Kinases , Eukaryotic Cells , Models, Biological , Schizosaccharomyces , Centrosome , Cyclin-Dependent Kinases/metabolism , Cyclins/metabolism , Eukaryotic Cells/cytology , Eukaryotic Cells/enzymology , Eukaryotic Cells/metabolism , Mitosis , Phosphoproteins/metabolism , Phosphorylation , Protein Phosphatase 1 , Proteomics , S Phase , Schizosaccharomyces/cytology , Schizosaccharomyces/enzymology , Schizosaccharomyces/metabolism , Substrate Specificity
6.
EMBO J ; 40(16): e107911, 2021 08 16.
Article in English | MEDLINE | ID: mdl-34296454

ABSTRACT

Cell growth is orchestrated by a number of interlinking cellular processes. Components of the TOR pathway have been proposed as potential regulators of cell growth, but little is known about their immediate effects on protein synthesis in response to TOR-dependent growth inhibition. Here, we present a resource providing an in-depth characterisation of Schizosaccharomyces pombe phosphoproteome in relation to changes observed in global cellular protein synthesis upon TOR inhibition. We find that after TOR inhibition, the rate of protein synthesis is rapidly reduced and that notable phosphorylation changes are observed in proteins involved in a range of cellular processes. We show that this reduction in protein synthesis rates upon TOR inhibition is not dependent on S6K activity, but is partially dependent on the S. pombe homologue of eIF4G, Tif471. Our study demonstrates the impact of TOR-dependent phospho-regulation on the rate of protein synthesis and establishes a foundational resource for further investigation of additional TOR-regulated targets both in fission yeast and other eukaryotes.


Subject(s)
Phosphoproteins/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/metabolism , TOR Serine-Threonine Kinases/metabolism , Phosphorylation , Protein Biosynthesis , Proteome , Schizosaccharomyces/genetics , Schizosaccharomyces/growth & development
7.
Evol Appl ; 13(10): 2630-2645, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33294013

ABSTRACT

Species introductions provide opportunities to quantify rates and patterns of evolutionary change in response to novel environments. Alewives (Alosa pseudoharengus) are native to the East Coast of North America where they ascend coastal rivers to spawn in lakes and then return to the ocean. Some populations have become landlocked within the last 350 years and diverged phenotypically from their ancestral marine population. More recently, alewives were introduced to the Laurentian Great Lakes (~150 years ago), but these populations have not been compared to East Coast anadromous and landlocked populations. We quantified 95 years of evolution in foraging traits and overall body shape of Great Lakes alewives and compared patterns of phenotypic evolution of Great Lakes alewives to East Coast anadromous and landlocked populations. Our results suggest that gill raker spacing in Great Lakes alewives has evolved in a dynamic pattern that is consistent with responses to strong but intermittent eco-evolutionary feedbacks with zooplankton size. Following their initial colonization of Lakes Ontario and Michigan, dense alewife populations likely depleted large-bodied zooplankton, which drove a decrease in alewife gill raker spacing. However, the introduction of large, non-native zooplankton to the Great Lakes in later decades resulted in an increase in gill raker spacing, and present-day Great Lakes alewives have gill raker spacing patterns that are similar to the ancestral East Coast anadromous population. Conversely, contemporary Great Lakes alewife populations possess a gape width consistent with East Coast landlocked populations. Body shape showed remarkable parallel evolution with East Coast landlocked populations, likely due to a shared response to the loss of long-distance movement or migrations. Our results suggest the colonization of a new environment and cessation of migration can result in rapid parallel evolution in some traits, but contingency also plays a role, and a dynamic ecosystem can also yield novel trait combinations.

8.
STAR Protoc ; 1(1): 100022, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32685930

ABSTRACT

Amine-reactive Tandem Mass Tag 10plex (TMT10plex) labeling permits multiplexed protein identification and quantitative analysis by tandem mass spectrometry (MS/MS). We have used this technology to label 20 Saccharomyces cerevisiae samples collected in a time-resolved manner from a wild-type and phosphatase mutant background to characterize phosphoproteome dynamics. Here, we provide a detailed protocol for biological and mass spectrometry sample preparation and analysis. For complete details on the use and execution of this protocol, please refer to Touati et al. (2019).


Subject(s)
Proteome/analysis , Saccharomyces cerevisiae Proteins/analysis , Saccharomyces cerevisiae/chemistry , Tandem Mass Spectrometry/methods , Mutation , Phosphoric Monoester Hydrolases/genetics , Saccharomyces cerevisiae/genetics
9.
Ecol Evol ; 10(12): 5402-5415, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32607162

ABSTRACT

The latitudinal diversity gradient (LDG) is an established macroecological pattern, but is poorly studied in microbial organisms, particularly parasites. In this study, we tested whether latitude, elevation, and host species predicted patterns of prevalence, alpha diversity, and community turnover of hemosporidian parasites. We expected parasite diversity to decrease with latitude, alongside the diversity of their hosts and vectors. Similarly, we expected infection prevalence to decrease with latitude as vector abundances decrease. Lastly, we expected parasite community turnover to increase with latitudinal distance and to be higher between rather than within host species. We tested these hypotheses by screening blood and tissue samples of three closely related avian species in a clade of North American songbirds (Turdidae: Catharus, n = 466) across 17.5° of latitude. We used a nested PCR approach to identify parasites in hemosporidian genera that are transmitted by different dipteran vectors. Then, we implemented linear-mixed effects and generalized dissimilarity models to evaluate the effects of latitude, elevation, and host species on parasite metrics. We found high diversity of hemosporidian parasites in Catharus thrushes (n = 44 lineages) but no evidence of latitudinal gradients in alpha diversity or prevalence. Parasites in the genus Leucocytozoon were most prevalent and lineage rich in this study system; however, there was limited turnover with latitude and host species. Contrastingly, Plasmodium parasites were less prevalent and diverse than Leucocytozoon parasites, yet communities turned over at a higher rate with latitude and host species. Leucocytozoon communities were skewed by the dominance of one or two highly prevalent lineages with broad latitudinal distributions. The few studies that evaluate the hemosporidian LDG do not find consistent patterns of prevalence and diversity, which makes it challenging to predict how they will respond to global climate change.

10.
Curr Biol ; 30(5): 883-892.e4, 2020 03 09.
Article in English | MEDLINE | ID: mdl-32084401

ABSTRACT

The cyclin-dependent kinases (CDKs) are the major cell-cycle regulators that phosphorylate hundreds of substrates, controlling the onset of S phase and M phase [1-3]. However, the patterns of substrate phosphorylation increase are not uniform, as different substrates become phosphorylated at different times as cells proceed through the cell cycle [4, 5]. In fission yeast, the correct ordering of CDK substrate phosphorylation can be established by the activity of a single mitotic cyclin-CDK complex [6, 7]. Here, we investigate the substrate-docking region, the hydrophobic patch, on the fission yeast mitotic cyclin Cdc13 as a potential mechanism to correctly order CDK substrate phosphorylation. We show that the hydrophobic patch targets Cdc13 to the yeast centrosome equivalent, the spindle pole body (SPB), and disruption of this motif prevents both centrosomal localization of Cdc13 and the onset of mitosis but does not prevent S phase. CDK phosphorylation in mitosis is compromised for approximately half of all mitotic CDK substrates, with substrates affected generally being those that require the highest levels of CDK activity to become phosphorylated and those that are located at the SPB. Our experiments suggest that the hydrophobic patch of mitotic cyclins contributes to CDK substrate selection by directing the localization of Cdc13-CDK to centrosomes and that this localization of CDK contributes to the CDK substrate phosphorylation necessary to ensure proper entry into mitosis. Finally, we show that mutation of the hydrophobic patch prevents cyclin B1 localization to centrosomes in human cells, suggesting that this mechanism of cyclin-CDK spatial regulation may be conserved across eukaryotes.


Subject(s)
Centrosome/metabolism , Cyclin B1/metabolism , Cyclin-Dependent Kinases/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/metabolism , Cell Line , Humans , Hydrophobic and Hydrophilic Interactions , Phosphorylation
11.
Cell Rep ; 29(7): 2105-2119.e4, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31722221

ABSTRACT

Temporal control over protein phosphorylation and dephosphorylation is crucial for accurate chromosome segregation and for completion of the cell division cycle during exit from mitosis. In budding yeast, the Cdc14 phosphatase is thought to be a major regulator at this time, while in higher eukaryotes PP2A phosphatases take a dominant role. Here, we use time-resolved phosphoproteome analysis in budding yeast to evaluate the respective contributions of Cdc14, PP2ACdc55, and PP2ARts1. This reveals an overlapping requirement for all three phosphatases during mitotic progression. Our time-resolved phosphoproteome resource reveals how Cdc14 instructs the sequential pattern of phosphorylation changes, in part through preferential recognition of serine-based cyclin-dependent kinase (Cdk) substrates. PP2ACdc55 and PP2ARts1 in turn exhibit a broad substrate spectrum with some selectivity for phosphothreonines and a role for PP2ARts1 in sustaining Aurora kinase activity. These results illustrate synergy and coordination between phosphatases as they orchestrate phosphoproteome dynamics during mitotic progression.


Subject(s)
Cell Cycle Proteins/metabolism , Mitosis , Phosphoproteins/metabolism , Protein Phosphatase 2/metabolism , Protein Tyrosine Phosphatases/metabolism , Proteome/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Cell Cycle Proteins/genetics , Phosphoproteins/genetics , Protein Phosphatase 2/genetics , Protein Tyrosine Phosphatases/genetics , Proteome/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
12.
Proc Biol Sci ; 286(1900): 20190364, 2019 04 10.
Article in English | MEDLINE | ID: mdl-30940055

ABSTRACT

Understanding interactions between biota and the built environment is increasingly important as human modification of the landscape expands in extent and intensity. For migratory birds, collisions with lighted structures are a major cause of mortality, but the mechanisms behind these collisions are poorly understood. Using 40 years of collision records of passerine birds, we investigated the importance of species' behavioural ecologies in predicting rates of building collisions during nocturnal migration through Chicago, IL and Cleveland, OH, USA. We found that the use of nocturnal flight calls is an important predictor of collision risk in nocturnally migrating passerine birds. Species that produce flight calls during nocturnal migration tended to collide with buildings more than expected given their local abundance, whereas those that do not use such communication collided much less frequently. Our results suggest that a stronger attraction response to artificial light at night in species that produce flight calls may mediate these differences in collision rates. Nocturnal flight calls probably evolved to facilitate collective decision-making during navigation, but this same social behaviour may now exacerbate vulnerability to a widespread anthropogenic disturbance. Our results also suggest that social behaviour during migration may reflect poorly understood differences in navigational mechanisms across lineages of birds.


Subject(s)
Animal Migration , Birds/physiology , Mortality , Vocalization, Animal , Animals , Chicago , Ohio
13.
Cell Rep ; 24(2): 503-514, 2018 07 10.
Article in English | MEDLINE | ID: mdl-29996109

ABSTRACT

Multiple protein kinases regulate cell-cycle progression, of which the cyclin-dependent kinases (CDKs) are thought to act as upstream master regulators. We have used quantitative phosphoproteomics to analyze the fission yeast cell cycle at sufficiently high temporal resolution to distinguish fine-grain differences in substrate phosphorylation dynamics on a proteome-wide scale. This dataset provides a useful resource for investigating the regulatory dynamics of cell-cycle kinases and their substrates. For example, our analysis indicates that the substrates of different mitotic kinases (CDK, NIMA-related, Polo-like, and Aurora) are phosphorylated in sequential, kinase-specific waves during mitosis. Phosphoproteomics analysis after chemical-genetic manipulation of CDK activity suggests that the timing of these waves is established by the differential dependency of the downstream kinases on upstream CDK. We have also examined the temporal organization of phosphorylation during G1/S, as well as the coordination between the NDR-related kinase Orb6, which controls polarized growth, and other cell-cycle kinases.


Subject(s)
Cell Cycle , Phosphoproteins/metabolism , Protein Kinases/metabolism , Proteomics/methods , Schizosaccharomyces/cytology , Schizosaccharomyces/metabolism , Signal Transduction , Cyclin-Dependent Kinases/metabolism , Isotope Labeling , Mitosis , Phosphorylation , Proteome/metabolism , Schizosaccharomyces/enzymology , Schizosaccharomyces pombe Proteins/metabolism , Time Factors
14.
EMBO J ; 37(10)2018 05 15.
Article in English | MEDLINE | ID: mdl-29650682

ABSTRACT

The cell division cycle culminates in mitosis when two daughter cells are born. As cyclin-dependent kinase (Cdk) activity reaches its peak, the anaphase-promoting complex/cyclosome (APC/C) is activated to trigger sister chromatid separation and mitotic spindle elongation, followed by spindle disassembly and cytokinesis. Degradation of mitotic cyclins and activation of Cdk-counteracting phosphatases are thought to cause protein dephosphorylation to control these sequential events. Here, we use budding yeast to analyze phosphorylation dynamics of 3,456 phosphosites on 1,101 proteins with high temporal resolution as cells progress synchronously through mitosis. This reveals that successive inactivation of S and M phase Cdks and of the mitotic kinase Polo contributes to order these dephosphorylation events. Unexpectedly, we detect as many new phosphorylation events as there are dephosphorylation events. These correlate with late mitotic kinase activation and identify numerous candidate targets of these kinases. These findings revise our view of mitotic exit and portray it as a dynamic process in which a range of mitotic kinases contribute to order both protein dephosphorylation and phosphorylation.


Subject(s)
Cell Cycle , Mitosis/physiology , Phosphoproteins/metabolism , Proteome/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomycetales/metabolism , Cell Cycle Proteins/metabolism , Cytokinesis , Phosphoprotein Phosphatases/metabolism , Phosphorylation , Proteolysis , Saccharomycetales/growth & development
15.
Proc Natl Acad Sci U S A ; 115(5): 1039-1044, 2018 01 30.
Article in English | MEDLINE | ID: mdl-29339503

ABSTRACT

The long-held view that gamma delta (γδ) T cells in mice and humans are fundamentally dissimilar, as are γδ cells in blood and peripheral tissues, has been challenged by emerging evidence of the cells' regulation by butyrophilin (BTN) and butyrophilin-like (BTNL) molecules. Thus, murine Btnl1 and the related gene, Skint1, mediate T cell receptor (TCR)-dependent selection of murine intraepithelial γδ T cell repertoires in gut and skin, respectively; BTNL3 and BTNL8 are TCR-dependent regulators of human gut γδ cells; and BTN3A1 is essential for TCR-dependent activation of human peripheral blood Vγ9Vδ2+ T cells. However, some observations concerning BTN/Btnl molecules continue to question the extent of mechanistic conservation. In particular, murine and human gut γδ cell regulation depends on pairings of Btnl1 and Btnl6 and BTNL3 and BTNL8, respectively, whereas blood γδ cells are reported to be regulated by BTN3A1 independent of other BTNs. Addressing this paradox, we show that BTN3A2 regulates the subcellular localization of BTN3A1, including functionally important associations with the endoplasmic reticulum (ER), and is specifically required for optimal BTN3A1-mediated activation of Vγ9Vδ2+ T cells. Evidence that BTNL3/BTNL8 and Btnl1/Btnl6 likewise associate with the ER reinforces the prospect of broadly conserved mechanisms underpinning the selection and activation of γδ cells in mice and humans, and in blood and extralymphoid sites.


Subject(s)
Butyrophilins/immunology , Butyrophilins/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Amino Acid Motifs , Animals , Antigens, CD/chemistry , Antigens, CD/immunology , Antigens, CD/metabolism , Butyrophilins/chemistry , Endoplasmic Reticulum/immunology , Endoplasmic Reticulum/metabolism , HEK293 Cells , Humans , Lymphocyte Activation , Mice , Protein Multimerization
16.
Physiol Biochem Zool ; 91(2): 814-825, 2018.
Article in English | MEDLINE | ID: mdl-29381120

ABSTRACT

Whole-organism performance tasks are accomplished by the integration of morphological traits and physiological functions. Understanding how evolutionary change in morphology and physiology influences whole-organism performance will yield insight into the factors that shape its own evolution. We demonstrate that nonmigratory populations of alewife (Alosa pseudoharengus) have evolved reduced swimming performance in parallel, compared with their migratory ancestor. In contrast to theoretically and empirically based predictions, poor swimming among nonmigratory populations is unrelated to the evolution of osmoregulation and occurs despite the fact that nonmigratory alewives have a more fusiform (torpedo-like) body shape than their ancestor. Our results suggest that elimination of long-distance migration from the life cycle has shaped performance more than changes in body shape and physiological regulatory capacity.


Subject(s)
Animal Migration , Fishes/physiology , Lakes , Swimming , Acclimatization , Animals , Biological Evolution , Fishes/genetics , Salinity
17.
PLoS Genet ; 13(5): e1006767, 2017 May.
Article in English | MEDLINE | ID: mdl-28545058

ABSTRACT

How cells control the overall size and growth of membrane-bound organelles is an important unanswered question of cell biology. Fission yeast cells maintain a nuclear size proportional to cellular size, resulting in a constant ratio between nuclear and cellular volumes (N/C ratio). We have conducted a genome-wide visual screen of a fission yeast gene deletion collection for viable mutants altered in their N/C ratio, and have found that defects in both nucleocytoplasmic mRNA transport and lipid synthesis alter the N/C ratio. Perturbing nuclear mRNA export results in accumulation of both mRNA and protein within the nucleus, and leads to an increase in the N/C ratio which is dependent on new membrane synthesis. Disruption of lipid synthesis dysregulates nuclear membrane growth and results in an enlarged N/C ratio. We propose that both properly regulated nucleocytoplasmic transport and nuclear membrane growth are central to the control of nuclear growth and size.


Subject(s)
Active Transport, Cell Nucleus/genetics , Cell Membrane/genetics , Cell Nucleus/genetics , Cell Size , Cell Membrane/metabolism , Genome, Fungal , Lipids/biosynthesis , Lipids/genetics , Nuclear Envelope/genetics , RNA, Messenger/genetics , Schizosaccharomyces/genetics , Schizosaccharomyces/growth & development
19.
Sci Rep ; 7: 44313, 2017 03 14.
Article in English | MEDLINE | ID: mdl-28290497

ABSTRACT

Sister-chromatid cohesion is established by Eco1-mediated acetylation on two conserved tandem lysines in the cohesin Smc3 subunit. However, the molecular basis of Eco1 substrate recognition and acetylation in cohesion is not fully understood. Here, we discover and rationalize the substrate specificity of Eco1 using mass spectrometry coupled with in-vitro acetylation assays and crystallography. Our structures of the X. laevis Eco2 (xEco2) bound to its primary and secondary Smc3 substrates demonstrate the plasticity of the substrate-binding site, which confers substrate specificity by concerted conformational changes of the central ß hairpin and the C-terminal extension.


Subject(s)
Acetyltransferases/chemistry , Cell Cycle Proteins/chemistry , Chromosomal Proteins, Non-Histone/chemistry , Chromosome Segregation , Nuclear Proteins/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Xenopus Proteins/chemistry , Acetylation , Acetyltransferases/genetics , Acetyltransferases/metabolism , Amino Acid Sequence , Animals , Binding Sites , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Crystallography, X-Ray , Gene Expression , Models, Molecular , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity , Xenopus Proteins/genetics , Xenopus Proteins/metabolism , Xenopus laevis/genetics , Xenopus laevis/metabolism
20.
Nat Commun ; 8: 13952, 2017 01 06.
Article in English | MEDLINE | ID: mdl-28059076

ABSTRACT

The functions of cohesin are central to genome integrity, chromosome organization and transcription regulation through its prevention of premature sister-chromatid separation and the formation of DNA loops. The loading of cohesin onto chromatin depends on the Scc2-Scc4 complex; however, little is known about how it stimulates the cohesion-loading activity. Here we determine the large 'hook' structure of Scc2 responsible for catalysing cohesin loading. We identify key Scc2 surfaces that are crucial for cohesin loading in vivo. With the aid of previously determined structures and homology modelling, we derive a pseudo-atomic structure of the full-length Scc2-Scc4 complex. Finally, using recombinantly purified Scc2-Scc4 and cohesin, we performed crosslinking mass spectrometry and interaction assays that suggest Scc2-Scc4 uses its modular structure to make multiple contacts with cohesin.


Subject(s)
Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/metabolism , Conserved Sequence , Models, Molecular , Protein Binding , Protein Subunits/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Cohesins
SELECTION OF CITATIONS
SEARCH DETAIL
...