Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 148
Filter
Add more filters










Publication year range
1.
ACS Med Chem Lett ; 15(2): 302-309, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38352850

ABSTRACT

Herein, we report the synthesis and characterization of a novel set of substituted indazole-ethanamines and indazole-tetrahydropyridines as potent serotonin receptor subtype 2 (5-HT2) agonists. Specifically, we examine the 5-HT2 pharmacology of the direct indazole analogs of 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and related serotonergic tryptamines, and highlight the need for rigorous characterization of 5-HT2 subtype selectivity for these analogs, particularly for the 5-HT2B receptor subtype. Within this series, the potent analog VU6067416 (19d) was optimized to have suitable preclinical pharmacokinetic properties for in vivo dosing, although potent 5-HT2B agonist activity precluded further characterization for this series. Additionally, in silico docking studies suggest that the high potency of 19d may be a consequence of a halogen-bonding interaction with Phe2345.38 in the 5-HT2A orthosteric pocket.

2.
Proc Natl Acad Sci U S A ; 120(18): e2216792120, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37104474

ABSTRACT

Acetylcholine (ACh) in cortical neural circuits mediates how selective attention is sustained in the presence of distractors and how flexible cognition adjusts to changing task demands. The cognitive domains of attention and cognitive flexibility might be differentially supported by the M1 muscarinic acetylcholine receptor (mAChR) subtype. Understanding how M1 mAChR mechanisms support these cognitive subdomains is of highest importance for advancing novel drug treatments for conditions with altered attention and reduced cognitive control including Alzheimer's disease or schizophrenia. Here, we tested this question by assessing how the subtype-selective M1 mAChR positive allosteric modulator (PAM) VU0453595 affects visual search and flexible reward learning in nonhuman primates. We found that allosteric potentiation of M1 mAChRs enhanced flexible learning performance by improving extradimensional set shifting, reducing latent inhibition from previously experienced distractors and reducing response perseveration in the absence of adverse side effects. These procognitive effects occurred in the absence of apparent changes of attentional performance during visual search. In contrast, nonselective ACh modulation using the acetylcholinesterase inhibitor (AChEI) donepezil improved attention during visual search at doses that did not alter cognitive flexibility and that already triggered gastrointestinal cholinergic side effects. These findings illustrate that M1 mAChR positive allosteric modulation enhances cognitive flexibility without affecting attentional filtering of distraction, consistent with M1 activity boosting the effective salience of relevant over irrelevant objects specifically during learning. These results suggest that M1 PAMs are versatile compounds for enhancing cognitive flexibility in disorders spanning schizophrenia and Alzheimer's diseases.


Subject(s)
Acetylcholinesterase , Alzheimer Disease , Animals , Allosteric Regulation/physiology , Cholinergic Agents/pharmacology , Acetylcholine/pharmacology , Cognition , Alzheimer Disease/drug therapy , Primates , Receptor, Muscarinic M1
3.
Adv Neurobiol ; 30: 37-99, 2023.
Article in English | MEDLINE | ID: mdl-36928846

ABSTRACT

Historically, animal models have been routinely used in the characterization of novel chemical entities (NCEs) for various psychiatric disorders. Animal models have been essential in the in vivo validation of novel drug targets, establishment of lead compound pharmacokinetic to pharmacodynamic relationships, optimization of lead compounds through preclinical candidate selection, and development of translational measures of target occupancy and functional target engagement. Yet, with decades of multiple NCE failures in Phase II and III efficacy trials for different psychiatric disorders, the utility and value of animal models in the drug discovery process have come under intense scrutiny along with the widespread withdrawal of the pharmaceutical industry from psychiatric drug discovery. More recently, the development and utilization of animal models for the discovery of psychiatric NCEs has undergone a dynamic evolution with the application of the Research Domain Criteria (RDoC) framework for better design of preclinical to clinical translational studies combined with innovative genetic, neural circuitry-based, and automated testing technologies. In this chapter, the authors will discuss this evolving role of animal models for improving the different stages of the discovery and development in the identification of next generation treatments for psychiatric disorders.


Subject(s)
Mental Disorders , Animals , Mental Disorders/drug therapy , Models, Animal
4.
ACS Chem Neurosci ; 14(3): 435-457, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36655909

ABSTRACT

Degeneration of the cholinergic basal forebrain is implicated in the development of cognitive deficits and sleep/wake architecture disturbances in mild cognitive impairment (MCI) and Alzheimer's disease (AD). Indirect-acting muscarinic cholinergic receptor agonists, such as acetylcholinesterase inhibitors (AChEIs), remain the only FDA-approved treatments for the cognitive impairments observed in AD that target the cholinergic system. Novel direct-acting muscarinic cholinergic receptor agonists also improve cognitive performance in young and aged preclinical species and are currently under clinical development for AD. However, little is known about the effects of direct-acting muscarinic cholinergic receptor agonists on disruptions of sleep/wake architecture and arousal observed in nonpathologically aged rodents, nonhuman primates, and clinical populations. The purpose of the present study was to provide the first assessment of the effects of the direct-acting M1/M4-preferring muscarinic cholinergic receptor agonist xanomeline on sleep/wake architecture and arousal in young and nonpathologically aged mice, in comparison with the AChEI donepezil, when dosed in either the active or inactive phase of the circadian cycle. Xanomeline produced a robust reversal of both wake fragmentation and disruptions in arousal when dosed in the active phase of nonpathologically aged mice. In contrast, donepezil had no effect on either age-related wake fragmentation or arousal deficits when dosed during the active phase. When dosed in the inactive phase, both xanomeline and donepezil produced increases in wake and arousal and decreases in nonrapid eye movement sleep quality and quantity in nonpathologically aged mice. Collectively, these novel findings suggest that direct-acting muscarinic cholinergic agonists such as xanomeline may provide enhanced wakefulness and arousal in nonpathological aging, MCI, and AD patient populations.


Subject(s)
Arousal , Muscarinic Agonists , Neurocognitive Disorders , Receptor, Muscarinic M1 , Receptor, Muscarinic M4 , Sleep , Animals , Mice , Acetylcholinesterase/metabolism , Arousal/drug effects , Arousal/physiology , Cholinergic Agents/pharmacology , Cholinergic Agents/therapeutic use , Donepezil/pharmacology , Donepezil/therapeutic use , Muscarinic Agonists/pharmacology , Muscarinic Agonists/therapeutic use , Receptor, Muscarinic M1/agonists , Receptor, Muscarinic M1/metabolism , Receptor, Muscarinic M4/agonists , Receptor, Muscarinic M4/metabolism , Thiadiazoles/pharmacology , Thiadiazoles/therapeutic use , Wakefulness/drug effects , Wakefulness/physiology , Sleep/drug effects , Sleep/physiology , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Neurocognitive Disorders/drug therapy , Neurocognitive Disorders/metabolism
5.
Neuropharmacology ; 227: 109424, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36720403

ABSTRACT

Recent evidence suggests that inhibition of the M5 muscarinic acetylcholine receptor (mAChR) may provide a novel non-opioid mechanism for the treatment of opioid use disorder (OUD). Previous studies from our group and others have demonstrated that acute administration of the long-acting M5 negative allosteric modulator (NAM) ML375 attenuates established self-administration of cocaine, ethanol, oxycodone, and remifentanil in rats. In the present study, we characterized the effects of acute and repeated administration of the novel, short-acting M5 NAM VU6008667 on the reinforcing effects of oxycodone and reinstatement of oxycodone-seeking behaviors in male Sprague-Dawley rats, as well as on physiological withdrawal from oxycodone. Acute VU6008667 decreased oxycodone self-administration under both fixed ratio 3 (FR3) and progressive ratio (PR) schedules of reinforcement and attenuated cue-induced reinstatement of lever pressing following extinction from oxycodone self-administration, a commonly used relapse model. When administered daily to opioid-naïve rats, VU6008667 prevented acquisition of oxycodone self-administration behavior. VU6008667 had minimal effects on naloxone-precipitated withdrawal. After acute administration, VU6008667 did not inhibit sucrose self-administration and, when given chronically, delayed but did not prevent acquisition of sucrose maintained self-administration. VU6008667 also did not impact oxycodone induced anti-nociception or motor coordination, but mildly decreased novelty exploration. Finally, acute or daily VU6008667 administration did not impair cued fear conditioning. Overall, these results suggest that inhibition of the M5 mAChR may provide a novel, non-opioid based treatment for distinct aspects of OUD by inhibiting opioid intake in established OUD, reducing relapse during abstinence, and by reducing the risk of developing OUD.


Subject(s)
Analgesics, Opioid , Opioid-Related Disorders , Animals , Male , Rats , Oxycodone , Rats, Sprague-Dawley , Receptors, Muscarinic , Self Administration , Sucrose/pharmacology
6.
Bioorg Med Chem Lett ; 78: 129021, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36228968

ABSTRACT

This Letter describes our ongoing effort to improve the clearance of selective M5 antagonists. Herein, we report the replacement of the previously disclosed piperidine amide (4, disclosed in Part 1) with a pyrrolidine amide core. Several compounds within this series provided good potency, subtype selectivity, and low to moderate clearance profiles. Interestingly, the left-hand side SAR for this series diverged from our earlier efforts.


Subject(s)
Amides , Pyrrolidines , Amides/pharmacology , Pyrrolidines/pharmacology , Kinetics , Muscarinic Antagonists
7.
Bioorg Med Chem Lett ; 76: 128988, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36113671

ABSTRACT

The lack of potent and selective tool compounds with pharmaceutically favorable properties limits the in vivo understanding of muscarinic acetylcholine receptor subtype 5 (M5) biology. Previously, we presented a highly potent and selective M5 antagonist VU6019650 with a suboptimal clearance profile as our second-generation tool compound. Herein, we disclose our ongoing efforts to generate next-generation M5 antagonists with improved clearance profiles. A mix and match approach between VU6019650 (lead) and VU0500325 (HTS hit) generated a piperidine amide-based novel M5 antagonist series. Several analogs within this series, including 29f, provided good on-target potency with improved clearance profiles, though room for improvement remains.


Subject(s)
Amides , Receptors, Muscarinic , Amides/pharmacology , Kinetics , Piperidines/pharmacology
8.
J Med Chem ; 65(8): 6273-6286, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35417155

ABSTRACT

The muscarinic acetylcholine receptor (mAChR) subtype 5 (M5) represents a novel potential target for the treatment of multiple addictive disorders, including opioid use disorder. Through chemical optimization of several functional high-throughput screening hits, VU6019650 (27b) was identified as a novel M5 orthosteric antagonist with high potency (human M5 IC50 = 36 nM), M5 subtype selectivity (>100-fold selectivity against human M1-4) and favorable physicochemical properties for systemic dosing in preclinical addiction models. In acute brain slice electrophysiology studies, 27b blocked the nonselective muscarinic agonist oxotremorine-M-induced increases in neuronal firing rates of midbrain dopamine neurons in the ventral tegmental area, a part of the mesolimbic dopaminergic reward circuitry. Moreover, 27b also inhibited oxycodone self-administration in male Sprague-Dawley rats within a dose range that did not impair general motor output.


Subject(s)
Opioid-Related Disorders , Receptor, Muscarinic M5 , Animals , Dopaminergic Neurons , Male , Rats , Rats, Sprague-Dawley , Receptor, Muscarinic M1 , Receptors, Muscarinic
9.
Front Neurosci ; 15: 700822, 2021.
Article in English | MEDLINE | ID: mdl-34276300

ABSTRACT

Selective negative allosteric modulators (NAMs) targeting the metabotropic glutamate receptor subtype 5 (mGlu5) demonstrate anxiolytic-like and antidepressant-like effects yet concern regarding adverse effect liability remains. Functional coupling of mGlu5 with ionotropic N-methyl-D-aspartate receptors (NMDARs) represents a potential mechanism through which full inhibition leads to adverse effects, as NMDAR inhibition can induce cognitive impairments and psychotomimetic-like effects. Recent development of "partial" mGlu5 NAMs, characterized by submaximal but saturable levels of blockade, may represent a novel development approach to broaden the therapeutic index of mGlu5 NAMs. This study compared the partial mGlu5 NAM, M-5MPEP, with the full mGlu5 NAM, VU0424238 on sleep, cognition, and brain function alone and in combination with a subthreshold dose of the NMDAR antagonist, MK-801, using a paired-associates learning (PAL) cognition task and electroencephalography (EEG) in rats. M-5MPEP and VU0424238 decreased rapid eye movement (REM) sleep and increased REM sleep latency, both putative biomarkers of antidepressant-like activity. Neither compound alone affected accuracy, but 30 mg/kg VU0424238 combined with MK-801 decreased accuracy on the PAL task. Using quantitative EEG, VU0424238, but not M-5MPEP, prolonged arousal-related elevations in high gamma power, and, in combination, VU0424238 potentiated effects of MK-801 on high gamma power. Together, these studies further support a functional interaction between mGlu5 and NMDARs that may correspond with cognitive impairments. Present data support further development of partial mGlu5 NAMs given their potentially broader therapeutic index than full mGlu5 NAMs and use of EEG as a translational biomarker to titrate doses aligning with therapeutic versus adverse effects.

10.
Neuropsychopharmacology ; 45(13): 2219-2228, 2020 12.
Article in English | MEDLINE | ID: mdl-32868847

ABSTRACT

Degeneration of basal forebrain cholinergic circuitry represents an early event in the development of Alzheimer's disease (AD). These alterations in central cholinergic function are associated with disruptions in arousal, sleep/wake architecture, and cognition. Changes in sleep/wake architecture are also present in normal aging and may represent a significant risk factor for AD. M1 muscarinic acetylcholine receptor (mAChR) positive allosteric modulators (PAMs) have been reported to enhance cognition across preclinical species and may also provide beneficial effects for age- and/or neurodegenerative disease-related changes in arousal and sleep. In the present study, electroencephalography was conducted in young animals (mice, rats and nonhuman primates [NHPs]) and in aged mice to examine the effects of the selective M1 PAM VU0453595 in comparison with the acetylcholinesterase inhibitor donepezil, M1/M4 agonist xanomeline (in NHPs), and M1 PAM BQCA (in rats) on sleep/wake architecture and arousal. In young wildtype mice, rats, and NHPs, but not in M1 mAChR KO mice, VU0453595 produced dose-related increases in high frequency gamma power, a correlate of arousal and cognition enhancement, without altering duration of time across all sleep/wake stages. Effects of VU0453595 in NHPs were observed within a dose range that did not induce cholinergic-mediated adverse effects. In contrast, donepezil and xanomeline increased time awake in rodents and engendered dose-limiting adverse effects in NHPs. Finally, VU0453595 attenuated age-related decreases in REM sleep duration in aged wildtype mice. Development of M1 PAMs represents a viable strategy for attenuating age-related and dementia-related pathological disturbances of sleep and arousal.


Subject(s)
Neurodegenerative Diseases , Rodentia , Allosteric Regulation , Animals , Arousal , Mice , Primates , Pyridines , Pyrroles , Rats , Receptor, Muscarinic M1 , Sleep
11.
Eur J Neurosci ; 52(1): 2815-2826, 2020 07.
Article in English | MEDLINE | ID: mdl-32449556

ABSTRACT

Behavioral assays in the mouse can show marked differences between male and female animals of a given genotype. These differences identified in such preclinical studies may have important clinical implications. We recently made a mouse model with impaired presynaptic inhibition through Gßγ-SNARE signaling. Here, we examine the role of sexual dimorphism in the severity of the phenotypes of this model, the SNAP25Δ3 mouse. In males, we already reported that SNAP25Δ3 homozygotes demonstrated phenotypes in motor coordination, nociception, spatial memory and stress processing. We now report that while minimal sexually dimorphic effects were observed for the nociceptive, motor or memory phenotypes, large differences were observed in the stress-induced hyperthermia paradigm, with male SNAP25Δ3 homozygotes exhibiting an increase in body temperature subsequent to handling relative to wild-type littermates, while no such genotype-dependent effect was observed in females. This suggests sexually dimorphic mechanisms of Gßγ-SNARE signaling for stress processing or thermoregulation within the mouse. Second, we examined the effects of heterozygosity with respect to the SNAP25Δ3 mutation. Heterozygote SNAP25Δ3 animals were tested alongside homozygote and wild-type littermates in all of the aforementioned paradigms and displayed phenotypes similar to wild-type animals or an intermediate state. From this, we conclude that the SNAP25Δ3 mutation does not behave in an autosomal dominant manner, but rather displays incomplete dominance for many phenotypes.


Subject(s)
Hyperthermia , Sex Characteristics , Animals , Disease Models, Animal , Exocytosis , Female , Male , Mice , Spatial Memory
12.
Biol Psychiatry ; 88(12): 898-909, 2020 12 15.
Article in English | MEDLINE | ID: mdl-32331824

ABSTRACT

BACKGROUND: Alcohol use disorder (AUD) is a major socioeconomic burden on society, and current pharmacotherapeutic treatment options are inadequate. Aberrant alcohol use and seeking alters frontostriatal function. METHODS: We performed genome-wide RNA sequencing and subsequent quantitative polymerase chain reaction and receptor binding validation in the caudate-putamen of human AUD samples to identify potential therapeutic targets. We then back-translated our top candidate targets into a rodent model of long-term alcohol consumption to assess concordance of molecular adaptations in the rat striatum. Finally, we adopted rat behavioral models of alcohol intake and seeking to validate a potential therapeutic target. RESULTS: We found that G protein-coupled receptors were the top canonical pathway differentially regulated in individuals with AUD. The M4 muscarinic acetylcholine receptor (mAChR) was downregulated at the gene and protein levels in the putamen, but not in the caudate, of AUD samples. We found concordant downregulation of the M4 mAChR, specifically on dopamine D1 receptor-expressing medium spiny neurons in the rat dorsolateral striatum. Systemic administration of the selective M4 mAChR positive allosteric modulator, VU0467154, reduced home cage and operant alcohol self-administration, motivation to obtain alcohol, and cue-induced reinstatement of alcohol seeking in rats. Local microinjections of VU0467154 in the rat dorsolateral striatum reduced alcohol self-administration and cue-induced reinstatement of alcohol seeking. CONCLUSIONS: Collectively, these results identify the M4 mAChR as a potential therapeutic target for the treatment of AUD and the D1 receptor-positive medium spiny neurons in the dorsolateral striatum as a key site mediating the actions of M4 mAChR in relation to alcohol consumption and seeking.


Subject(s)
Alcoholism , Receptor, Muscarinic M4 , Acetylcholine , Alcoholism/drug therapy , Alcoholism/genetics , Animals , Cholinergic Agents , Humans , Rats , Receptor, Muscarinic M4/genetics , Rodentia
13.
Genes Brain Behav ; 19(7): e12654, 2020 09.
Article in English | MEDLINE | ID: mdl-32248644

ABSTRACT

Neurodevelopmental disorders are characterized by deficits in communication, cognition, attention, social behavior and/or motor control. Previous studies have pointed to the involvement of genes that regulate synaptic structure and function in the pathogenesis of these disorders. One such gene, GRM7, encodes the metabotropic glutamate receptor 7 (mGlu7 ), a G protein-coupled receptor that regulates presynaptic neurotransmitter release. Mutations and polymorphisms in GRM7 have been associated with neurodevelopmental disorders in clinical populations; however, limited preclinical studies have evaluated mGlu7 in the context of this specific disease class. Here, we show that the absence of mGlu7 in mice is sufficient to alter phenotypes within the domains of social behavior, associative learning, motor function, epilepsy and sleep. Moreover, Grm7 knockout mice exhibit an attenuated response to amphetamine. These findings provide rationale for further investigation of mGlu7 as a potential therapeutic target for neurodevelopmental disorders such as idiopathic autism, attention deficit hyperactivity disorder and Rett syndrome.


Subject(s)
Amphetamine-Related Disorders/genetics , Epilepsy/genetics , Neurodevelopmental Disorders/genetics , Receptors, Metabotropic Glutamate/genetics , Animals , Female , Learning , Male , Mice , Neurodevelopmental Disorders/physiopathology , Phenotype , Receptors, Metabotropic Glutamate/deficiency , Sleep , Social Behavior
14.
Mol Psychiatry ; 25(11): 2786-2799, 2020 11.
Article in English | MEDLINE | ID: mdl-30116027

ABSTRACT

Recent clinical and preclinical studies suggest that selective activators of the M4 muscarinic acetylcholine receptor have potential as a novel treatment for schizophrenia. M4 activation inhibits striatal dopamine release by mobilizing endocannabinoids, providing a mechanism for local effects on dopamine signaling in the striatum but not in extrastriatal areas. G protein-coupled receptors (GPCRs) typically induce endocannabinoid release through activation of Gαq/11-type G proteins whereas M4 transduction occurs through Gαi/o-type G proteins. We now report that the ability of M4 to inhibit dopamine release and induce antipsychotic-like effects in animal models is dependent on co-activation of the Gαq/11-coupled mGlu1 subtype of metabotropic glutamate (mGlu) receptor. This is especially interesting in light of recent findings that multiple loss of function single nucleotide polymorphisms (SNPs) in the human gene encoding mGlu1 (GRM1) are associated with schizophrenia, and points to GRM1/mGlu1 as a gene within the "druggable genome" that could be targeted for the treatment of schizophrenia. Herein, we report that potentiation of mGlu1 signaling following thalamo-striatal stimulation is sufficient to inhibit striatal dopamine release, and that a novel mGlu1 positive allosteric modulator (PAM) exerts robust antipsychotic-like effects through an endocannabinoid-dependent mechanism. However, unlike M4, mGlu1 does not directly inhibit dopamine D1 receptor signaling and does not reduce motivational responding. Taken together, these findings highlight a novel mechanism of cross talk between mGlu1 and M4 and demonstrate that highly selective mGlu1 PAMs may provide a novel strategy for the treatment of positive symptoms associated with schizophrenia.


Subject(s)
Allosteric Regulation/drug effects , Antipsychotic Agents/metabolism , Receptor, Muscarinic M4/metabolism , Receptors, Metabotropic Glutamate/metabolism , Animals , Glutamic Acid/metabolism , Mice , Mice, Inbred C57BL
15.
Adv Pharmacol ; 86: 153-196, 2019.
Article in English | MEDLINE | ID: mdl-31378251

ABSTRACT

Muscarinic acetylcholine receptor (mAChRs) subtypes represent exciting new targets for the treatment of schizophrenia and substance use disorder (SUD). Recent advances in the development of subtype-selective allosteric modulators have revealed promising effects in preclinical models targeting the different symptoms observed in schizophrenia and SUD. M1 PAMs display potential for addressing the negative and cognitive symptoms of schizophrenia, while M4 PAMs exhibit promise in treating preclinical models predictive of antipsychotic-like activity. In SUD, there is increasing support for modulation of mesocorticolimbic dopaminergic circuitry involved in SUD with selective M4 mAChR PAMs or M5 mAChR NAMs. Allosteric modulators of these mAChR subtypes have demonstrated efficacy in rodent models of cocaine and ethanol seeking, with indications that these ligand may also be useful for other substances of abuse, as well as in various stages in the cycle of addiction. Importantly, allosteric modulators of the different mAChR subtypes may provide viable treatment options, while conferring greater subtype specificity and corresponding enhanced therapeutic index than orthosteric muscarinic ligands and maintaining endogenous temporo-spatial ACh signaling. Overall, subtype specific mAChR allosteric modulators represent important novel therapeutic mechanisms for schizophrenia and SUD.


Subject(s)
Receptors, Muscarinic/metabolism , Schizophrenia/drug therapy , Substance-Related Disorders/drug therapy , Allosteric Regulation/drug effects , Animals , Antipsychotic Agents/chemistry , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Humans , Signal Transduction
16.
Neurotherapeutics ; 16(3): 649-665, 2019 07.
Article in English | MEDLINE | ID: mdl-31364065

ABSTRACT

There are 3 common physiological estrogens, of which estradiol (E2) is seen to decline rapidly over the menopausal transition. This decline in E2 has been associated with a number of changes in the brain, including cognitive changes, effects on sleep, and effects on mood. These effects have been demonstrated in both rodent and non-human preclinical models. Furthermore, E2 interactions have been indicated in a number of neuropsychiatric disorders, including Alzheimer's disease, schizophrenia, and depression. In normal brain aging, there are a number of systems that undergo changes and a number of these show interactions with E2, particularly the cholinergic system, the dopaminergic system, and mitochondrial function. E2 treatment has been shown to ameliorate some of the behavioral and morphological changes seen in preclinical models of menopause; however, in clinical populations, the effects of E2 treatment on cognitive changes after menopause are mixed. The future use of sex hormone treatment will likely focus on personalized or precision medicine for the prevention or treatment of cognitive disturbances during aging, with a better understanding of who may benefit from such treatment.


Subject(s)
Brain/metabolism , Cognitive Aging , Estrogens/metabolism , Animals , Brain/physiology , Cognitive Aging/physiology , Estrogens/physiology , Humans
17.
ACS Chem Neurosci ; 10(8): 3740-3750, 2019 08 21.
Article in English | MEDLINE | ID: mdl-31268669

ABSTRACT

Opioid use disorder (OUD) is a debilitating neuropsychiatric condition characterized by compulsive opioid use, dependence, and repeated relapse after periods of abstinence. Given the high risk of developing OUD following prescription opioid use, the continued need for opioid-induced analgesia, and the limitations of current OUD treatments, it is necessary to develop novel, non-opioid-based treatments for OUD and decrease abuse potential of prescription opioids. Recent evidence suggests that negative allosteric modulation (NAM) of the M5 muscarinic acetylcholine receptor (M5 mAChR) may provide an alternative therapeutic approach for the treatment of OUD. Previous studies demonstrated localization of M5 mAChR expression within the mesocorticolimbic reward circuitry and that the selective M5 NAM ML375 attenuates both cocaine and alcohol self-administration in rats. In the present study, the effects of ML375 were evaluated in rats self-administering the µ-opioid agonists oxycodone or remifentanil on a progressive ratio (PR) schedule or on cue reactivity (a rodent model of relapse) in the absence of oxycodone following 72 h of abstinence. ML375 reduced the PR break point for oxycodone and remifentanil self-administration and attenuated cue-elicited responding. Importantly, ML375 did not affect sucrose pellet-maintained responding on a PR schedule or opioid-induced antinociception using the hot-plate and tail-flick assays. We also confirm expression of M5 mAChR mRNA in the ventral tegmental area and show that this is primarily on dopamine (tyrosine hydroxylase mRNA-positive) neurons. Taken together, these findings suggest that selective functional antagonism of the M5 mAChR may represent a novel, non-opioid-based treatment for OUD.


Subject(s)
Allosteric Regulation/drug effects , Narcotics/administration & dosage , Nociception/drug effects , Oxycodone/administration & dosage , Receptor, Muscarinic M5/metabolism , Animals , Behavior, Animal/drug effects , Conditioning, Operant/drug effects , Conditioning, Psychological/drug effects , Cues , Male , Rats , Rats, Sprague-Dawley , Remifentanil/administration & dosage , Reward , Self Administration
18.
Bioorg Med Chem Lett ; 29(16): 2224-2228, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31248774

ABSTRACT

This letter describes progress towards an M4 PAM preclinical candidate inspired by an unexpected aldehyde oxidase (AO) metabolite of a novel, CNS penetrant thieno[2,3-c]pyridine core to an equipotent, non-CNS penetrant thieno[2,3-c]pyrdin-7(6H)-one core. Medicinal chemistry design efforts yielded two novel tricyclic cores that enhanced M4 PAM potency, regained CNS penetration, displayed favorable DMPK properties and afforded robust in vivo efficacy in reversing amphetamine-induced hyperlocomotion in rats.


Subject(s)
Aldehyde Oxidase/metabolism , Myotonia Congenita/metabolism , Receptor, Muscarinic M4/metabolism , Animals , Drug Discovery , Humans , Rats , Structure-Activity Relationship
19.
Bioorg Med Chem Lett ; 29(14): 1714-1718, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31113706

ABSTRACT

This letter describes progress towards an M4 PAM preclinical candidate that resulted in the discovery of VU6005806/AZN-00016130. While the thieno[2,3-c]pyridazine core has been a consistent feature of key M4 PAMs, no work had previously been reported with respect to alternate functionality at the C3 position of the pyridazine ring. Here, we detail new chemistry and analogs that explored this region, and quickly led to VU6005806/AZN-00016130, which was profiled as a putative candidate. While, the ß-amino carboxamide moiety engendered solubility limited absorption in higher species precluding advancement (or requiring extensive pharmaceutical sciences formulation), VU6005806/AZN-00016130 represents a new, high quality preclinical in vivo probe.


Subject(s)
Allosteric Regulation/immunology , Receptor, Muscarinic M4/immunology , Molecular Structure , Structure-Activity Relationship
20.
ACS Med Chem Lett ; 10(3): 255-260, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30891122

ABSTRACT

Herein, we report the discovery of a novel potent, selective, CNS penetrant, and orally bioavailable mGlu4 PAM, VU0652957 (VU2957, Valiglurax). VU2957 possessed attractive in vitro and in vivo pharmacological and DMPK properties across species. To advance toward the clinic, a spray-dried dispersion (SDD) formulation of VU2957 was developed to support IND-enabling toxicology studies. Based on its overall profile, VU2957 was evaluated as a preclinical development candidate for the treatment of Parkinson's disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...