Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 1885, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424076

ABSTRACT

Earth System Models (ESMs) continue to diagnose a wide range of carbon budgets for each level of global warming. Here, we present emergent constraints on the carbon budget as a function of global warming, which combine the available ESM historical simulations and future projections for a range of scenarios, with observational estimates of global warming and anthropogenic CO2 emissions to the present day. We estimate mean and likely ranges for cumulative carbon budgets for the Paris targets of 1.5 °C and 2 °C of global warming of 812 [691, 933] PgC and 1048 [881, 1216] PgC, which are more than 10% larger than the ensemble mean values from the CMIP6 models. The linearity between cumulative emissions and global warming is found to be maintained at least until 4 °C, and is consistent with an effective Transient Climate Response to Emissions (eTCRE) of 2.1 [1.8, 2.6] °C/1000PgC, from a global warming of 1.2 °C onwards.

2.
Natl Sci Rev ; 10(12): nwad211, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38033737
4.
Nature ; 624(7990): 46-48, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37993618
5.
Philos Trans A Math Phys Eng Sci ; 379(2210): 20200454, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34565221

ABSTRACT

Atmospheric methane removal (e.g. in situ methane oxidation to carbon dioxide) may be needed to offset continued methane release and limit the global warming contribution of this potent greenhouse gas. Because mitigating most anthropogenic emissions of methane is uncertain this century, and sudden methane releases from the Arctic or elsewhere cannot be excluded, technologies for methane removal or oxidation may be required. Carbon dioxide removal has an increasingly well-established research agenda and technological foundation. No similar framework exists for methane removal. We believe that a research agenda for negative methane emissions-'removal' or atmospheric methane oxidation-is needed. We outline some considerations for such an agenda here, including a proposed Methane Removal Model Intercomparison Project (MR-MIP). This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 1)'.

6.
Geophys Res Lett ; 48(8): e2020GL091883, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-34149115

ABSTRACT

Many nations responded to the corona virus disease-2019 (COVID-19) pandemic by restricting travel and other activities during 2020, resulting in temporarily reduced emissions of CO2, other greenhouse gases and ozone and aerosol precursors. We present the initial results from a coordinated Intercomparison, CovidMIP, of Earth system model simulations which assess the impact on climate of these emissions reductions. 12 models performed multiple initial-condition ensembles to produce over 300 simulations spanning both initial condition and model structural uncertainty. We find model consensus on reduced aerosol amounts (particularly over southern and eastern Asia) and associated increases in surface shortwave radiation levels. However, any impact on near-surface temperature or rainfall during 2020-2024 is extremely small and is not detectable in this initial analysis. Regional analyses on a finer scale, and closer attention to extremes (especially linked to changes in atmospheric composition and air quality) are required to test the impact of COVID-19-related emission reductions on near-term climate.

8.
Article in English | MEDLINE | ID: mdl-30297462

ABSTRACT

In early 2016, we predicted that the annual rise in carbon dioxide concentration at Mauna Loa would be the largest on record. Our forecast used a statistical relationship between observed and forecast sea surface temperatures in the Niño 3.4 region and the annual CO2 rise. Here, we provide a formal verification of that forecast. The observed rise of 3.4 ppm relative to 2015 was within the forecast range of 3.15 ± 0.53 ppm, so the prediction was successful. A global terrestrial biosphere model supports the expectation that the El Niño weakened the tropical land carbon sink. We estimate that the El Niño contributed approximately 25% to the record rise in CO2, with 75% due to anthropogenic emissions. The 2015/2016 CO2 rise was greater than that following the previous large El Niño in 1997/1998, because anthropogenic emissions had increased. We had also correctly predicted that 2016 would be the first year with monthly mean CO2 above 400 ppm all year round. We now estimate that atmospheric CO2 at Mauna Loa would have remained above 400 ppm all year round in 2016 even if the El Niño had not occurred, contrary to our previous expectations based on a simple extrapolation of previous trends.This article is part of a discussion meeting issue 'The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.


Subject(s)
Carbon Dioxide/analysis , Carbon Sequestration , El Nino-Southern Oscillation , Temperature , Atmosphere/analysis , Models, Theoretical
9.
Phys Chem Chem Phys ; 20(35): 22537-22546, 2018 Sep 12.
Article in English | MEDLINE | ID: mdl-30140842

ABSTRACT

In this paper, ordered TiO2 nanotubes were grown on a Ti substrate via electrochemical anodization and subsequently annealed at 450 °C for 4 h under various atmospheres to create different point defects. Oxygen-deficient environments such as Ar and N2 were used to develop oxygen vacancies, while a water vapor (WV) atmosphere was used to generate titanium vacancies. Computational models by density functional theory predicted that the presence of oxygen vacancies would cause electronic conductivity to increase, while the presence of Ti vacancies could lead to decreased conductivity. The predictions were confirmed by two-point electrical conductivity measurements and Mott-Schottky analysis. Raman spectroscopy was also conducted to confirm the presence of defects. The annealed samples were then evaluated as anodes in lithium-ion batteries. The oxygen-deficient samples had an improvement in capacity by 10% and 25% for Ar- and N2-treated samples, respectively, while the WV-treated sample displayed a capacity increase of 24% compared to the stoichiometric control sample (annealed in O2). Electrochemical impedance spectroscopy studies revealed that the WV-treated sample's increased capacity was a consequence of its higher Li diffusivity. The results suggest that balanced electrical and ionic conductivity in nanostructured metal oxide anodes can be tuned through defect generation using heat treatments in various atmospheres for improved electrochemical properties.

10.
Sci Rep ; 8(1): 10962, 2018 07 19.
Article in English | MEDLINE | ID: mdl-30026558

ABSTRACT

Simplified representations of processes influencing forest biomass in Earth system models (ESMs) contribute to large uncertainty in projections. We evaluate forest biomass from eight ESMs outputs archived in the Coupled Model Intercomparison Project Phase 5 (CMIP5) using the biomass data synthesized from radar remote sensing and ground-based observations across northern extratropical latitudes. ESMs exhibit large biases in the forest distribution, forest fraction, and mass of carbon pools that contribute to uncertainty in forest total biomass (biases range from -20 Pg C to 135 Pg C). Forest total biomass is primarily positively correlated with precipitation variations, with surface temperature becoming equally important at higher latitudes, in both simulations and observations. Relatively small differences in forest biomass between the pre-industrial period and the contemporary period indicate uncertainties in forest biomass were introduced in the pre-industrial model equilibration (spin-up), suggesting parametric or structural model differences are a larger source of uncertainty than differences in transient responses. Our findings emphasize the importance of improved (1) models of carbon allocation to biomass compartments, (2) distribution of vegetation types in models, and (3) reproduction of pre-industrial vegetation conditions, in order to reduce the uncertainty in forest biomass simulated by ESMs.

11.
Glob Chang Biol ; 23(2): 512-533, 2017 02.
Article in English | MEDLINE | ID: mdl-27447350

ABSTRACT

In the light of daunting global sustainability challenges such as climate change, biodiversity loss and food security, improving our understanding of the complex dynamics of the Earth system is crucial. However, large knowledge gaps related to the effects of land management persist, in particular those human-induced changes in terrestrial ecosystems that do not result in land-cover conversions. Here, we review the current state of knowledge of ten common land management activities for their biogeochemical and biophysical impacts, the level of process understanding and data availability. Our review shows that ca. one-tenth of the ice-free land surface is under intense human management, half under medium and one-fifth under extensive management. Based on our review, we cluster these ten management activities into three groups: (i) management activities for which data sets are available, and for which a good knowledge base exists (cropland harvest and irrigation); (ii) management activities for which sufficient knowledge on biogeochemical and biophysical effects exists but robust global data sets are lacking (forest harvest, tree species selection, grazing and mowing harvest, N fertilization); and (iii) land management practices with severe data gaps concomitant with an unsatisfactory level of process understanding (crop species selection, artificial wetland drainage, tillage and fire management and crop residue management, an element of crop harvest). Although we identify multiple impediments to progress, we conclude that the current status of process understanding and data availability is sufficient to advance with incorporating management in, for example, Earth system or dynamic vegetation models in order to provide a systematic assessment of their role in the Earth system. This review contributes to a strategic prioritization of research efforts across multiple disciplines, including land system research, ecological research and Earth system modelling.


Subject(s)
Climate Change , Conservation of Natural Resources , Biodiversity , Ecosystem , Trees
12.
Nature ; 494(7437): 341-4, 2013 Feb 21.
Article in English | MEDLINE | ID: mdl-23389447

ABSTRACT

The release of carbon from tropical forests may exacerbate future climate change, but the magnitude of the effect in climate models remains uncertain. Coupled climate-carbon-cycle models generally agree that carbon storage on land will increase as a result of the simultaneous enhancement of plant photosynthesis and water use efficiency under higher atmospheric CO(2) concentrations, but will decrease owing to higher soil and plant respiration rates associated with warming temperatures. At present, the balance between these effects varies markedly among coupled climate-carbon-cycle models, leading to a range of 330 gigatonnes in the projected change in the amount of carbon stored on tropical land by 2100. Explanations for this large uncertainty include differences in the predicted change in rainfall in Amazonia and variations in the responses of alternative vegetation models to warming. Here we identify an emergent linear relationship, across an ensemble of models, between the sensitivity of tropical land carbon storage to warming and the sensitivity of the annual growth rate of atmospheric CO(2) to tropical temperature anomalies. Combined with contemporary observations of atmospheric CO(2) concentration and tropical temperature, this relationship provides a tight constraint on the sensitivity of tropical land carbon to climate change. We estimate that over tropical land from latitude 30° north to 30° south, warming alone will release 53 ± 17 gigatonnes of carbon per kelvin. Compared with the unconstrained ensemble of climate-carbon-cycle projections, this indicates a much lower risk of Amazon forest dieback under CO(2)-induced climate change if CO(2) fertilization effects are as large as suggested by current models. Our study, however, also implies greater certainty that carbon will be lost from tropical land if warming arises from reductions in aerosols or increases in other greenhouse gases.


Subject(s)
Carbon Cycle/physiology , Carbon Dioxide/metabolism , Climate Change , Models, Theoretical , Trees/metabolism , Tropical Climate , Carbon Dioxide/analysis , Cell Respiration , Photosynthesis , Rain , Temperature , Uncertainty
13.
Philos Trans A Math Phys Eng Sci ; 369(1934): 67-84, 2011 Jan 13.
Article in English | MEDLINE | ID: mdl-21115513

ABSTRACT

The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) assessed a range of scenarios of future greenhouse-gas emissions without policies to specifically reduce emissions, and concluded that these would lead to an increase in global mean temperatures of between 1.6°C and 6.9°C by the end of the twenty-first century, relative to pre-industrial. While much political attention is focused on the potential for global warming of 2°C relative to pre-industrial, the AR4 projections clearly suggest that much greater levels of warming are possible by the end of the twenty-first century in the absence of mitigation. The centre of the range of AR4-projected global warming was approximately 4°C. The higher end of the projected warming was associated with the higher emissions scenarios and models, which included stronger carbon-cycle feedbacks. The highest emissions scenario considered in the AR4 (scenario A1FI) was not examined with complex general circulation models (GCMs) in the AR4, and similarly the uncertainties in climate-carbon-cycle feedbacks were not included in the main set of GCMs. Consequently, the projections of warming for A1FI and/or with different strengths of carbon-cycle feedbacks are often not included in a wider discussion of the AR4 conclusions. While it is still too early to say whether any particular scenario is being tracked by current emissions, A1FI is considered to be as plausible as other non-mitigation scenarios and cannot be ruled out. (A1FI is a part of the A1 family of scenarios, with 'FI' standing for 'fossil intensive'. This is sometimes erroneously written as A1F1, with number 1 instead of letter I.) This paper presents simulations of climate change with an ensemble of GCMs driven by the A1FI scenario, and also assesses the implications of carbon-cycle feedbacks for the climate-change projections. Using these GCM projections along with simple climate-model projections, including uncertainties in carbon-cycle feedbacks, and also comparing against other model projections from the IPCC, our best estimate is that the A1FI emissions scenario would lead to a warming of 4°C relative to pre-industrial during the 2070s. If carbon-cycle feedbacks are stronger, which appears less likely but still credible, then 4°C warming could be reached by the early 2060s in projections that are consistent with the IPCC's 'likely range'.


Subject(s)
Climate Change , Global Warming , Agriculture , Carbon Dioxide/chemistry , Conservation of Natural Resources , Earth, Planet , Ecology , Models, Theoretical , Research/trends , Temperature , Water Supply
14.
Nature ; 458(7242): 1163-6, 2009 Apr 30.
Article in English | MEDLINE | ID: mdl-19407800

ABSTRACT

Global efforts to mitigate climate change are guided by projections of future temperatures. But the eventual equilibrium global mean temperature associated with a given stabilization level of atmospheric greenhouse gas concentrations remains uncertain, complicating the setting of stabilization targets to avoid potentially dangerous levels of global warming. Similar problems apply to the carbon cycle: observations currently provide only a weak constraint on the response to future emissions. Here we use ensemble simulations of simple climate-carbon-cycle models constrained by observations and projections from more comprehensive models to simulate the temperature response to a broad range of carbon dioxide emission pathways. We find that the peak warming caused by a given cumulative carbon dioxide emission is better constrained than the warming response to a stabilization scenario. Furthermore, the relationship between cumulative emissions and peak warming is remarkably insensitive to the emission pathway (timing of emissions or peak emission rate). Hence policy targets based on limiting cumulative emissions of carbon dioxide are likely to be more robust to scientific uncertainty than emission-rate or concentration targets. Total anthropogenic emissions of one trillion tonnes of carbon (3.67 trillion tonnes of CO(2)), about half of which has already been emitted since industrialization began, results in a most likely peak carbon-dioxide-induced warming of 2 degrees C above pre-industrial temperatures, with a 5-95% confidence interval of 1.3-3.9 degrees C.


Subject(s)
Atmosphere/chemistry , Carbon Dioxide/analysis , Carbon/analysis , Greenhouse Effect , Models, Theoretical , Temperature , Benchmarking , Computer Simulation , History, 18th Century , History, 19th Century , History, 20th Century , History, 21st Century , Human Activities/history , Industry/history , Time Factors , Uncertainty
15.
Nature ; 453(7192): 212-5, 2008 May 08.
Article in English | MEDLINE | ID: mdl-18464740

ABSTRACT

The Amazon rainforest plays a crucial role in the climate system, helping to drive atmospheric circulations in the tropics by absorbing energy and recycling about half of the rainfall that falls on it. This region (Amazonia) is also estimated to contain about one-tenth of the total carbon stored in land ecosystems, and to account for one-tenth of global, net primary productivity. The resilience of the forest to the combined pressures of deforestation and global warming is therefore of great concern, especially as some general circulation models (GCMs) predict a severe drying of Amazonia in the twenty-first century. Here we analyse these climate projections with reference to the 2005 drought in western Amazonia, which was associated with unusually warm North Atlantic sea surface temperatures (SSTs). We show that reduction of dry-season (July-October) rainfall in western Amazonia correlates well with an index of the north-south SST gradient across the equatorial Atlantic (the 'Atlantic N-S gradient'). Our climate model is unusual among current GCMs in that it is able to reproduce this relationship and also the observed twentieth-century multidecadal variability in the Atlantic N-S gradient, provided that the effects of aerosols are included in the model. Simulations for the twenty-first century using the same model show a strong tendency for the SST conditions associated with the 2005 drought to become much more common, owing to continuing reductions in reflective aerosol pollution in the Northern Hemisphere.


Subject(s)
Aerosols/analysis , Disasters/statistics & numerical data , Ecosystem , Environmental Pollution/statistics & numerical data , Greenhouse Effect , Models, Theoretical , Trees/physiology , Atlantic Ocean , Carbon Dioxide/analysis , Disasters/history , History, 20th Century , History, 21st Century , Pacific Ocean , Probability , Rain , Seasons , South America , Temperature
16.
Philos Trans R Soc Lond B Biol Sci ; 363(1498): 1857-64, 2008 May 27.
Article in English | MEDLINE | ID: mdl-18267905

ABSTRACT

Simulations with the Hadley Centre general circulation model (HadCM3), including carbon cycle model and forced by a 'business-as-usual' emissions scenario, predict a rapid loss of Amazonian rainforest from the middle of this century onwards. The robustness of this projection to both uncertainty in physical climate drivers and the formulation of the land surface scheme is investigated. We analyse how the modelled vegetation cover in Amazonia responds to (i) uncertainty in the parameters specified in the atmosphere component of HadCM3 and their associated influence on predicted surface climate. We then enhance the land surface description and (ii) implement a multilayer canopy light interception model and compare with the simple 'big-leaf' approach used in the original simulations. Finally, (iii) we investigate the effect of changing the method of simulating vegetation dynamics from an area-based model (TRIFFID) to a more complex size- and age-structured approximation of an individual-based model (ecosystem demography). We find that the loss of Amazonian rainforest is robust across the climate uncertainty explored by perturbed physics simulations covering a wide range of global climate sensitivity. The introduction of the refined light interception model leads to an increase in simulated gross plant carbon uptake for the present day, but, with altered respiration, the net effect is a decrease in net primary productivity. However, this does not significantly affect the carbon loss from vegetation and soil as a consequence of future simulated depletion in soil moisture; the Amazon forest is still lost. The introduction of the more sophisticated dynamic vegetation model reduces but does not halt the rate of forest dieback. The potential for human-induced climate change to trigger the loss of Amazon rainforest appears robust within the context of the uncertainties explored in this paper. Some further uncertainties should be explored, particularly with respect to the representation of rooting depth.


Subject(s)
Conservation of Natural Resources , Ecosystem , Trees , Uncertainty , Forecasting , Greenhouse Effect , Light , Models, Biological , Trees/physiology
17.
Carbon Balance Manag ; 2: 11, 2007 Dec 18.
Article in English | MEDLINE | ID: mdl-18088414

ABSTRACT

The 50-year global CO2 record led the way in establishing a scientific fact: modern civilization is changing important properties of the global atmosphere, oceans and biosphere. The evidence on which this scientific fact is based will be refined further, but the next challenge for scientists is broader. In addition to its traditional role in providing discovery, diagnosis, and prediction of the changes that are taking place on our planet, science has now also a role in helping society mitigate emissions by objectively quantifying them, and in helping adaptation by providing environmental forecasts on regional scales. Science is also expected to provide new options for society to tackle the transition to a new energy system, and to provide thorough environmental evaluation of all such options. This is what the meeting recognized as planetary responsibilities for scientists in the next 50 years.

18.
Nature ; 448(7157): 1037-41, 2007 Aug 30.
Article in English | MEDLINE | ID: mdl-17728755

ABSTRACT

In addition to influencing climatic conditions directly through radiative forcing, increasing carbon dioxide concentration influences the climate system through its effects on plant physiology. Plant stomata generally open less widely under increased carbon dioxide concentration, which reduces transpiration and thus leaves more water at the land surface. This driver of change in the climate system, which we term 'physiological forcing', has been detected in observational records of increasing average continental runoff over the twentieth century. Here we use an ensemble of experiments with a global climate model that includes a vegetation component to assess the contribution of physiological forcing to future changes in continental runoff, in the context of uncertainties in future precipitation. We find that the physiological effect of doubled carbon dioxide concentrations on plant transpiration increases simulated global mean runoff by 6 per cent relative to pre-industrial levels; an increase that is comparable to that simulated in response to radiatively forced climate change (11 +/- 6 per cent). Assessments of the effect of increasing carbon dioxide concentrations on the hydrological cycle that only consider radiative forcing will therefore tend to underestimate future increases in runoff and overestimate decreases. This suggests that freshwater resources may be less limited than previously assumed under scenarios of future global warming, although there is still an increased risk of drought. Moreover, our results highlight that the practice of assessing the climate-forcing potential of all greenhouse gases in terms of their radiative forcing potential relative to carbon dioxide does not accurately reflect the relative effects of different greenhouse gases on freshwater resources.


Subject(s)
Carbon Dioxide/metabolism , Greenhouse Effect , Plants/metabolism , Rain , Water/analysis , Models, Biological , Photosynthesis , Plant Transpiration , Temperature , Water/metabolism
20.
Nature ; 435(7046): 1187-90, 2005 Jun 30.
Article in English | MEDLINE | ID: mdl-15988515

ABSTRACT

Atmospheric aerosols counteract the warming effects of anthropogenic greenhouse gases by an uncertain, but potentially large, amount. This in turn leads to large uncertainties in the sensitivity of climate to human perturbations, and therefore also in carbon cycle feedbacks and projections of climate change. In the future, aerosol cooling is expected to decline relative to greenhouse gas forcing, because of the aerosols' much shorter lifetime and the pursuit of a cleaner atmosphere. Strong aerosol cooling in the past and present would then imply that future global warming may proceed at or even above the upper extreme of the range projected by the Intergovernmental Panel on Climate Change.

SELECTION OF CITATIONS
SEARCH DETAIL
...