Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 159
Filter
1.
Virus Res ; 347: 199420, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38880336

ABSTRACT

Human alphaherpesvirus 1 (HSV-1) establishes life-long latency in sensory neurons in trigeminal ganglia (TG), brainstem neurons, and other CNS neurons. Two important segments of the brainstem were examined in this study: principal sensory nucleus of the spinal trigeminal tract (Pr5) because it receives direct afferent inputs from TG, and locus coeruleus (LC) because it is indirectly connected to Pr5 and LC sends axonal projections to cortical structures, which may facilitate viral spread from brainstem to the brain. The only viral gene abundantly expressed during latency is the latency associated transcript (LAT). Previous studies revealed 8-week old female C57Bl/6 mice infected with a LAT null mutant (dLAT2903) versus wild-type (wt) HSV-1 exhibit higher levels of senescence markers and inflammation in LC of females. New studies revealed 1-year old mice latently infected with wt HSV-1 or dLAT2903 contained differences in neuroinflammation and senescence in Pr5 and LC versus young mice. In summary, these studies confirm HSV-1 promotes neuro-inflammation in the brainstem, which may accelerate neurodegenerative disease.

2.
J Virol ; 98(6): e0042324, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38771044

ABSTRACT

Bovine alphaherpesvirus 1 (BoHV-1) infection causes respiratory tract disorders and immune suppression and may induce bacterial pneumonia. BoHV-1 establishes lifelong latency in sensory neurons after acute infection. Reactivation from latency consistently occurs following stress or intravenous injection of the synthetic corticosteroid dexamethasone (DEX), which mimics stress. The immediate early transcription unit 1 (IEtu1) promoter drives expression of infected cell protein 0 (bICP0) and bICP4, two viral transcriptional regulators necessary for productive infection and reactivation from latency. The IEtu1 promoter contains two glucocorticoid receptor (GR) responsive elements (GREs) that are transactivated by activated GR. GC-rich motifs, including consensus binding sites for specificity protein 1 (Sp1), are in the IEtu1 promoter sequences. E2F family members bind a consensus sequence (TTTCCCGC) and certain specificity protein 1 (Sp1) sites. Consequently, we hypothesized that certain E2F family members activate IEtu1 promoter activity. DEX treatment of latently infected calves increased the number of E2F2+ TG neurons. GR and E2F2, but not E2F1, E2F3a, or E2F3b, cooperatively transactivate a 436-bp cis-regulatory module in the IEtu1 promoter that contains both GREs. A luciferase reporter construct containing a 222-bp fragment downstream of the GREs was transactivated by E2F2 unless two adjacent Sp1 binding sites were mutated. Chromatin immunoprecipitation studies revealed that E2F2 occupied IEtu1 promoter sequences when the BoHV-1 genome was transfected into mouse neuroblastoma (Neuro-2A) or monkey kidney (CV-1) cells. In summary, these findings revealed that GR and E2F2 cooperatively transactivate IEtu1 promoter activity, which is predicted to influence the early stages of BoHV-1 reactivation from latency. IMPORTANCE: Bovine alpha-herpesvirus 1 (BoHV-1) acute infection in cattle leads to establishment of latency in sensory neurons in the trigeminal ganglia (TG). A synthetic corticosteroid dexamethasone consistently initiates BoHV-1 reactivation in latently infected calves. The BoHV-1 immediate early transcription unit 1 (IEtu1) promoter regulates expression of infected cell protein 0 (bICP0) and bICP4, two viral transcriptional regulators. Hence, the IEtu1 promoter must be activated for the reactivation to occur. The number of TG neurons expressing E2F2, a transcription factor and cell cycle regulator, increased during early stages of reactivation from latency. The glucocorticoid receptor (GR) and E2F2, but not E2F1, E2F3a, or E2F3b, cooperatively transactivated a 436-bp cis-regulatory module (CRM) in the IEtu1 promoter that contains two GR responsive elements. Chromatin immunoprecipitation studies revealed that E2F2 occupies IEtu1 promoter sequences in cultured cells. GR and E2F2 mediate cooperative transactivation of IEtu1 promoter activity, which is predicted to stimulate viral replication following stressful stimuli.


Subject(s)
Gene Expression Regulation, Viral , Herpesvirus 1, Bovine , Promoter Regions, Genetic , Receptors, Glucocorticoid , Herpesvirus 1, Bovine/genetics , Herpesvirus 1, Bovine/physiology , Animals , Receptors, Glucocorticoid/metabolism , Receptors, Glucocorticoid/genetics , Cattle , Transcriptional Activation , Viral Proteins/metabolism , Viral Proteins/genetics , Dexamethasone/pharmacology , Virus Activation , Virus Latency , Cell Line , Herpesviridae Infections/virology , Herpesviridae Infections/metabolism , Herpesviridae Infections/veterinary , Herpesviridae Infections/genetics , Mice , Immediate-Early Proteins/metabolism , Immediate-Early Proteins/genetics , Response Elements , Binding Sites , Trans-Activators , Ubiquitin-Protein Ligases
3.
Antiviral Res ; 225: 105870, 2024 May.
Article in English | MEDLINE | ID: mdl-38556059

ABSTRACT

Following acute human alphaherpesvirus 1 (HSV-1) infection of oral-facial mucosal surfaces, sensory neurons in trigeminal ganglia (TG) are important sites for life-long latency. Neurons in the central nervous system, including brainstem, also harbor viral genomes during latency. Periodically, certain cellular stressors trigger reactivation from latency, which can lead to recurrent HSV-1 disease: herpes labialis, herpes stromal keratitis, and encephalitis for example. Activation of the glucocorticoid receptor (GR) by stressful stimuli enhances HSV-1 gene expression, replication, and explant-induced reactivation. GR and certain stress-induced Krüppel like factors (KLF) cooperatively transactivate cis-regulatory modules (CRM) that drive expression of viral transcriptional regulatory proteins (ICP0, ICP4, and ICP27). These CRMs lack GR response elements (GRE); however, specificity protein 1 (Sp1) binding sites are crucial for GR and KLF15 or KLF4 mediated transactivation. Hence, we tested whether Sp1 or Sp3 regulate viral replication and transactivation of the ICP0 promoter. During early stages of explant-induced reactivation from latency, the number of Sp3+ TG neurons were significantly higher relative to TG from latently infected mice. Conversely, Sp1+ TG neurons were only increased in females, but not male mice, during explant-induced reactivation. Sp1 siRNA significantly reduced HSV-1 replication in cultured mouse (Neuro-2A) and monkey (CV-1) cells. Mithramycin A, an antibiotic that has anti-tumor activity preferentially interacts with GC-rich DNA, including Sp1 binding sites, significantly reduced HSV-1 replication indicating it has antiviral activity. GR and Sp1 or Sp3 transactivated the HSV-1 ICP0 promoter in Neuro-2A and CV-1 cells confirming these transcription factors enhance viral replication and gene expression.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Immediate-Early Proteins , Plicamycin/analogs & derivatives , Female , Humans , Mice , Animals , Herpesvirus 1, Human/genetics , Receptors, Glucocorticoid/metabolism , Virus Activation , Virus Latency/genetics , Immediate-Early Proteins/genetics , Anti-Bacterial Agents , Ubiquitin-Protein Ligases/genetics
4.
J Virol ; 98(1): e0143623, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38084958

ABSTRACT

Bovine alphaherpesvirus 1 (BoHV-1) infections cause respiratory tract disorders and suppress immune responses, which can culminate in bacterial pneumonia. Following acute infection, BoHV-1 establishes lifelong latency in sensory neurons present in trigeminal ganglia (TG) and unknown cells in pharyngeal tonsil. Latently infected calves consistently reactivate from latency after an intravenous injection of the synthetic corticosteroid dexamethasone (DEX), which mimics the effects of stress. The immediate early transcription unit 1 (IEtu1) promoter drives expression of infected cell protein 0 (bICP0) and bICP4, two key viral transcriptional regulators. The IEtu1 promoter contains two functional glucocorticoid receptor (GR) response elements (GREs), and this promoter is transactivated by GR, DEX, and certain Krüppel transcription factors that interact with GC-rich motifs, including consensus specificity protein 1 (Sp1) binding sites. Based on these observations, we hypothesized that Sp1 stimulates productive infection and transactivates key BoHV-1 promoters. DEX treatment of latently infected calves increased the number of Sp1+ TG neurons and cells in pharyngeal tonsil indicating that Sp1 expression is induced by stress. Silencing Sp1 protein expression with siRNA or mithramycin A, a drug that preferentially binds GC-rich DNA, significantly reduced BoHV-1 replication. Moreover, BoHV-1 infection of permissive cells increased Sp1 steady-state protein levels. In transient transfection studies, GR and Sp1 cooperatively transactivate IEtu1 promoter activity unless both GREs are mutated. Co-immunoprecipitation studies revealed that GR and Sp1 interact in mouse neuroblastoma cells (Neuro-2A) suggesting this interaction stimulates IEtu1 promoter activity. Collectively, these studies suggested that the cellular transcription factor Sp1 enhances productive infection and stress-induced BoHV-1 reactivation from latency.IMPORTANCEFollowing acute infection, bovine alphaherpesvirus 1 (BoHV-1) establishes lifelong latency in sensory neurons in trigeminal ganglia (TG) and pharyngeal tonsil. The synthetic corticosteroid dexamethasone consistently induces BoHV-1 reactivation from latency. The number of TG neurons and cells in pharyngeal tonsil expressing the cellular transcription factor specificity protein 1 (Sp1) protein increases during early stages of dexamethasone-induced reactivation from latency. Silencing Sp1 expression impairs BoHV-1 replication in permissive cells. Interestingly, mithramycin A, a neuroprotective antibiotic that preferentially binds GC-rich DNA, impairs Sp1 functions and reduces BoHV-1 replication suggesting that it is a potential antiviral drug. The glucocorticoid receptor (GR) and Sp1 cooperatively transactivate the BoHV-1 immediate early transcript unit 1 (IEtu1) promoter, which drives expression of infected cell protein 0 (bICP0) and bICP4. Mithramycin A also reduced Sp1- and GR-mediated transactivation of the IEtu1 promoter. These studies revealed that GR and Sp1 trigger viral gene expression and replication following stressful stimuli.


Subject(s)
Herpesviridae Infections , Herpesvirus 1, Bovine , Receptors, Glucocorticoid , Sp1 Transcription Factor , Animals , Cattle , Mice , Adrenal Cortex Hormones/metabolism , Dexamethasone/pharmacology , DNA/metabolism , Herpesvirus 1, Bovine/physiology , Plicamycin/analogs & derivatives , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Transcription Factors/metabolism , Viral Proteins/metabolism , Sp1 Transcription Factor/metabolism
5.
J Virol ; 97(10): e0130523, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37823644

ABSTRACT

IMPORTANCE: A correlation exists between stress and increased episodes of human alpha-herpes virus 1 reactivation from latency. Stress increases corticosteroid levels; consequently, the glucocorticoid receptor (GR) is activated. Recent studies concluded that a GR agonist, but not an antagonist, accelerates productive infection and reactivation from latency. Furthermore, GR and certain stress-induced transcription factors cooperatively transactivate promoters that drive the expression of infected cell protein 0 (ICP0), ICP4, and VP16. This study revealed female mice expressing a GR containing a serine to alanine mutation at position 229 (GRS229A) shed significantly lower levels of infectious virus during explant-induced reactivation compared to male GRS229A or wild-type parental C57BL/6 mice. Furthermore, female GRS229A mice contained fewer VP16 + TG neurons compared to male GRS229A mice or wild-type mice during the early stages of explant-induced reactivation from latency. Collectively, these studies revealed that GR transcriptional activity has female-specific effects, whereas male mice can compensate for the loss of GR transcriptional activation.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Receptors, Glucocorticoid , Virus Activation , Animals , Female , Male , Mice , Herpes Simplex/genetics , Herpes Simplex/virology , Herpesvirus 1, Human/physiology , Immediate-Early Proteins/metabolism , Mice, Inbred C57BL , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Trigeminal Ganglion , Ubiquitin-Protein Ligases/metabolism , Virus Activation/genetics , Virus Latency/genetics
6.
Vaccines (Basel) ; 11(4)2023 Apr 02.
Article in English | MEDLINE | ID: mdl-37112697

ABSTRACT

Bovine Alphaherpesvirus 1 (BoHV-1) is one of the major respiratory pathogens in cattle worldwide. Infection often leads to a compromised host immune response that contributes to the development of the polymicrobial disease known as "bovine respiratory disease". After an initial transient phase of immunosuppression, cattle recover from the disease. This is due to the development of both innate and adaptive immune responses. With respect to adaptive immunity, both humoral and cell-mediated immunity are required to control infection. Thus, several BoHV-1 vaccines are designed to trigger both branches of the adaptive immune system. In this review, we summarize the current knowledge on cell-mediated immune responses directed against BoHV-1 infection and vaccination.

7.
J Virol ; 97(4): e0007323, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37022165

ABSTRACT

Stress-mediated activation of the glucocorticoid receptor (GR) and specific stress-induced transcription factors stimulate herpes simplex virus 1 (HSV-1) productive infection, explant-induced reactivation, and immediate early (IE) promoters that drive expression of infected cell protein 0 (ICP0), ICP4, and ICP27. Several published studies concluded the virion tegument protein VP16, ICP0, and/or ICP4 drives early steps of reactivation from latency. Notably, VP16 protein expression was induced in trigeminal ganglionic neurons of Swiss Webster or C57BL/6J mice during early stages of stress-induced reactivation. If VP16 mediates reactivation, we hypothesized stress-induced cellular transcription factors would stimulate its expression. To address this hypothesis, we tested whether stress-induced transcription factors transactivate a VP16 cis-regulatory module (CRM) located upstream of the VP16 TATA box (-249 to -30). Initial studies revealed the VP16 CRM cis-activated a minimal promoter more efficiently in mouse neuroblastoma cells (Neuro-2A) than mouse fibroblasts (NIH-3T3). GR and Slug, a stress-induced transcription factor that binds enhancer boxes (E-boxes), were the only stress-induced transcription factors examined that transactivated the VP16 CRM construct. GR- and Slug-mediated transactivation was reduced to basal levels when the E-box, two 1/2 GR response elements (GREs), or NF-κB binding site was mutated. Previous studies revealed GR and Slug cooperatively transactivated the ICP4 CRM, but not ICP0 or ICP27. Silencing of Slug expression in Neuro-2A cells significantly reduced viral replication, indicating Slug-mediated transactivation of ICP4 and VP16 CRM activity correlates with enhanced viral replication and reactivation from latency. IMPORTANCE Herpes simplex virus 1 (HSV-1) establishes lifelong latency in several types of neurons. Periodically cellular stressors trigger reactivation from latency. Viral regulatory proteins are not abundantly expressed during latency, indicating cellular transcription factors mediate early stages of reactivation. Notably, the glucocorticoid receptor (GR) and certain stress-induced transcription factors transactivate cis-regulatory modules (CRMs) essential for expression of infected cell protein 0 (ICP0) and ICP4, key viral transcriptional regulatory proteins linked to triggering reactivation from latency. Virion protein 16 (VP16) specifically transactivates IE promoter and was also reported to mediate early stages of reactivation from latency. GR and Slug, a stress-induced enhancer box (E-box) binding protein, transactivate a minimal promoter downstream of VP16 CRM, and these transcription factors occupy VP16 CRM sequences in transfected cells. Notably, Slug stimulates viral replication in mouse neuroblastoma cells suggesting Slug, by virtue of transactivating VP16 and ICP4 CRM sequences, can trigger reactivation in certain neurons.


Subject(s)
Herpes Simplex Virus Protein Vmw65 , Herpesvirus 1, Human , Promoter Regions, Genetic , Virus Replication , Animals , Mice , Gene Expression Regulation, Viral , Herpesviridae Infections/virology , Herpesvirus 1, Human/physiology , Mice, Inbred C57BL , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Virus Replication/genetics , Female , Herpes Simplex Virus Protein Vmw65/genetics , Herpes Simplex Virus Protein Vmw65/metabolism , NIH 3T3 Cells , Virus Latency/genetics , Mutation , RNA, Small Interfering/metabolism
8.
Viruses ; 15(2)2023 02 16.
Article in English | MEDLINE | ID: mdl-36851767

ABSTRACT

Bovine alphaherpesvirus 1 (BoHV-1) is a persistent and recurring disease that affects cattle worldwide. It is a major contributor to bovine respiratory disease and reproductive failure in the US. A major complication of BoHV-1 arises from the lifelong latent infection established in the sensory ganglia of the peripheral nervous system following acute infection. Lifelong latency is marked by periodic reactivation from latency that leads to virus transmission and transient immunosuppression. Physiological and environmental stress, along with hormone fluctuations, can drive virus reactivation from latency, allowing the virus to spread rapidly. This review discusses the mechanisms of the latency/reactivation cycle, with particular emphasis on how different hormones directly regulate BoHV-1 gene expression and productive infection. Glucocorticoids, including the synthetic corticosteroid dexamethasone, are major effectors of the stress response. Stress directly regulates BoHV-1 gene expression through multiple pathways, including ß-catenin dependent Wnt signaling, and the glucocorticoid receptor. Related type 1 nuclear hormone receptors, the androgen and progesterone receptors, also drive BoHV-1 gene expression and productive infection. These receptors form feed-forward transcription loops with the stress-induced Krüppel-like transcription factors KLF4 and KLF15. Understanding these molecular pathways is critical for developing novel therapeutics designed to block reactivation and reduce virus spread and disease.


Subject(s)
Cattle Diseases , Herpesvirus 1, Bovine , Animals , Cattle , Glucocorticoids , Immunosuppression Therapy , Kruppel-Like Transcription Factors , Virus Latency
9.
Curr Clin Microbiol Rep ; 10(4): 236-245, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38173564

ABSTRACT

Purpose of Review: Numerous studies concluded stress (acute, episodic acute, or chronic) increases the incidence of human alpha-herpes virus 1 (HSV-1) reactivation from latency in neurons. This review will summarize how stress stimulates viral gene expression, replication, and reactivation from latency. Recent Findings: Stress (capital S) stress-mediated activation of the glucocorticoid receptor (GR) accelerates reactivation from latency, whereas a corticosteroid-specific antagonist impairs viral replication and reactivation from latency. GR and specific stress-induced cellular transcription factors also stimulate viral promoters that drive expression of key viral transcriptional regulators: infected cell protein 0 (ICP0), ICP4, ICP27 and viral tegument protein (VP16). Hence, GR is predicted to initially stimulate viral gene expression. GR-mediated immune-inhibitory functions are also predicted to enhance viral replication and viral spread. Summary: Identifying cellular factors and viral regulatory proteins that trigger reactivation from latency in neurons may provide new therapeutic strategies designed to reduce the incidence of reactivation from latency.

10.
J Virol ; 96(23): e0101022, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36416585

ABSTRACT

Bovine herpesvirus 1 (BoHV-1), an important pathogen of cattle, establishes lifelong latency in sensory neurons within trigeminal ganglia (TG) after acute infection. The BoHV-1 latency-reactivation cycle, like other alphaherpesvirinae subfamily members, is essential for viral persistence and transmission. Notably, cells within pharyngeal tonsil (PT) also support a quiescent or latent BoHV-1 infection. The synthetic corticosteroid dexamethasone, which mimics the effects of stress, consistently induces BoHV-1 reactivation from latency allowing early stages of viral reactivation to be examined in the natural host. Based on previous studies, we hypothesized that stress-induced cellular factors trigger expression of key viral transcriptional regulatory genes. To explore this hypothesis, RNA-sequencing studies compared viral gene expression in PT during early stages of dexamethasone-induced reactivation from latency. Strikingly, RNA encoding infected cell protein 4 (bICP4), which is translated into an essential viral transcriptional regulatory protein, was detected 30 min after dexamethasone treatment. Ninety minutes after dexamethasone treatment bICP4 and, to a lesser extent, bICP0 RNA were detected in PT. All lytic cycle viral transcripts were detected within 3 h after dexamethasone treatment. Surprisingly, the latency related (LR) gene, the only viral gene abundantly expressed in latently infected TG neurons, was not detected in PT during latency. In TG neurons, bICP0 and the viral tegument protein VP16 are expressed before bICP4 during reactivation, suggesting distinct viral regulatory genes mediate reactivation from latency in PT versus TG neurons. Finally, these studies confirm PT is a biologically relevant site for BoHV-1 latency, reactivation from latency, and virus transmission. IMPORTANCE BoHV-1, a neurotropic herpesvirus, establishes, maintains, and reactivates from latency in neurons. BoHV-1 DNA is also detected in pharyngeal tonsil (PT) from latently infected calves. RNA-sequencing studies revealed the viral infected cell protein 4 (bICP4) RNA was expressed in PT of latently infected calves within 30 min after dexamethasone was used to initiate reactivation. As expected, bICP4 RNA was not detected during latency. All lytic cycle viral genes were expressed within 3 h after dexamethasone treatment. Conversely, bICP0 and the viral tegument protein VP16 are expressed prior to bICP4 in trigeminal ganglionic neurons during reactivation. The viral latency related gene, which is abundantly expressed in latently infected neurons, was not abundantly expressed in PT during latency. These studies provide new evidence PT is a biologically relevant site for BoHV-1 latency and reactivation. Finally, we predict other alphaherpesvirinae subfamily members utilize PT as a site for latency and reactivation.


Subject(s)
Adenoids , Herpesviridae Infections , Herpesvirus 1, Bovine , Viral Envelope Proteins , Virus Activation , Animals , Cattle , Adenoids/virology , Dexamethasone/pharmacology , Etoposide/pharmacology , Herpesvirus 1, Bovine/physiology , RNA/metabolism , Trigeminal Ganglion , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Latency , Viral Envelope Proteins/metabolism
11.
J Virol ; 96(17): e0108122, 2022 09 14.
Article in English | MEDLINE | ID: mdl-35975996

ABSTRACT

Following acute infection, herpes simplex virus 1 (HSV-1) establishes lifelong latency in neurons. The latency associated transcript (LAT) is the only viral gene abundantly expressed during latency. Wild-type (WT) HSV-1 reactivates more efficiently than LAT mutants because LAT promotes establishment and maintenance of latency. While sensory neurons in trigeminal ganglia (TG) are important sites for latency, brainstem is also a site for latency and reactivation from latency. The principal sensory nucleus of the spinal trigeminal tract (Pr5) likely harbors latent HSV-1 because it receives afferent inputs from TG. The locus coeruleus (LC), an adjacent brainstem region, sends axonal projections to cortical structures and is indirectly linked to Pr5. Senescent cells accumulate in the nervous system during aging and accelerate neurodegenerative processes. Generally senescent cells undergo irreversible cell cycle arrest and produce inflammatory cytokines and chemokines. Based on these observations, we hypothesized HSV-1 influences senescence and inflammation in Pr5 and LC of latently infected mice. This hypothesis was tested using a mouse model of infection. Strikingly, female but not age-matched male mice latently infected with a LAT null mutant (dLAT2903) exhibited significantly higher levels of senescence markers and inflammation in LC, including cell cycle inhibitor p16, NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3), IL-1α, and IL-ß. Conversely, Pr5 in female but not male mice latently infected with WT HSV-1 or dLAT2903 exhibited enhanced expression of important inflammatory markers. The predilection of HSV-1 to induce senescence and inflammation in key brainstem regions of female mice infers that enhanced neurodegeneration occurs. IMPORTANCE HSV-1 (herpes simplex virus 1), an important human pathogen, establishes lifelong latency in neurons in trigeminal ganglia and the central nervous system. In contrast to productive infection, the only viral transcript abundantly expressed in latently infected neurons is the latency associated transcript (LAT). The brainstem, including principal sensory nucleus of the spinal trigeminal tract (Pr5) and locus coeruleus (LC), may expedite HSV-1 spread from trigeminal ganglia to the brain. Enhanced senescence and expression of key inflammatory markers were detected in LC of female mice latently infected with a LAT null mutant (dLAT2903) relative to age-matched male or female mice latently infected with wild-type HSV-1. Conversely, wild-type HSV-1 and dLAT2903 induced higher levels of senescence and inflammatory markers in Pr5 of latently infected female mice. In summary, enhanced inflammation and senescence in LC and Pr5 of female mice latently infected with HSV-1 are predicted to accelerate neurodegeneration.


Subject(s)
Herpes Simplex , Herpesvirus 1, Human , Neuroinflammatory Diseases , Animals , Brain Stem/virology , Cellular Senescence , Female , Herpes Simplex/pathology , Herpesvirus 1, Human/pathogenicity , Herpesvirus 1, Human/physiology , Inflammation , Male , Mice , Mice, Inbred NOD , Neuroinflammatory Diseases/virology , Trigeminal Ganglion/virology , Virus Latency
12.
Viruses ; 14(6)2022 06 13.
Article in English | MEDLINE | ID: mdl-35746756

ABSTRACT

A corticosteroid antagonist impairs Herpes Simplex Virus 1 (HSV-1) productive infection and explant-induced reactivation from latency, suggesting corticosteroids and the glucocorticoid receptor (GR) mediate certain aspects of these complex virus-host interactions. GR-hormone complexes regulate transcription positively and negatively, in part, by binding GR response elements (GREs). Recent studies revealed infected cell protein 0 (ICP0), ICP4, and ICP27 promoter/cis-regulatory modules (CRMs) are cooperatively transactivated by GR and Krüppel-like factor 15 (KLF15), which forms a feed-forward transcription loop. We hypothesized the ICP0 promoter contains independent CRMs that are transactivated by GR, KLF15, and the synthetic corticosteroid dexamethasone (DEX). This hypothesis is based on the finding that the ICP0 promoter contains multiple transcription factor binding sites, and GR and KLF15 cooperatively transactivate the full-length ICP0 promoter. ICP0 promoter sequences spanning -800 to -635 (fragment A) were efficiently transactivated by GR, KLF15, and DEX in monkey kidney cells (Vero), whereas GR and DEX significantly enhanced promoter activity in mouse neuroblastoma cells (Neuro-2A). Furthermore, ICP0 fragment B (-458 to -635) was efficiently transactivated by GR, KLF15, and DEX in Vero cells, but not Neuro-2A cells. Finally, fragment D (-232 to -24) was transactivated significantly in Vero cells by GR, KLF15, and DEX, whereas KLF15 and DEX were sufficient for transactivation in Neuro-2A cells. Collectively, these studies revealed efficient transactivation of three independent CRMs within the ICP0 promoter by GR, KLF15, and/or DEX. Finally, GC-rich sequences containing specificity protein 1 (Sp1) binding sites were essential for transactivation.


Subject(s)
Herpes Simplex , Herpesviridae Infections , Herpesvirus 1, Human , Immediate-Early Proteins , Animals , Chlorocebus aethiops , Gene Expression Regulation, Viral , Herpesvirus 1, Human/physiology , Immediate-Early Proteins/genetics , Immediate-Early Proteins/metabolism , Kruppel-Like Transcription Factors/genetics , Mice , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Ubiquitin-Protein Ligases/metabolism , Vero Cells , Viral Proteins/genetics , Viral Proteins/metabolism
13.
Exp Eye Res ; 218: 109017, 2022 05.
Article in English | MEDLINE | ID: mdl-35240194

ABSTRACT

Following acute infection, herpes simplex virus type 1 (HSV-1) establishes life-long latency in sensory and other neurons. Recurrent ocular HSV-1 outbreaks are generally due to reactivation from latency. The HSV-1 latency-reactivation cycle is a complex virus-host relationship. The viral encoded latency-associated transcript (LAT) is abundantly expressed in latency and encodes several micro-RNAs and other small non-coding RNAs, which may regulate expression of key viral and cellular genes. Certain cellular signaling pathways, including Wnt/ß-catenin and mTOR pathway, mediate certain aspect of the latency-reactivation cycle. Stress, via activation of the glucocorticoid receptor and other stress induced cellular transcription factors, are predicted to trigger reactivation from latency by stimulating viral gene expression and impairing immune responses and inflammation. These observations suggest stress and certain cellular signaling pathways play key roles in regulating the latency-reactivation cycle and recurrent ocular disease.


Subject(s)
Eye Diseases , Herpesvirus 1, Human , MicroRNAs , Herpesvirus 1, Human/physiology , Humans , MicroRNAs/genetics , Signal Transduction , Virus Latency/genetics
14.
J Virol ; 96(5): e0213021, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35019726

ABSTRACT

Acute infection of the ocular, oral, or nasal cavity by bovine herpesvirus 1 (BoHV-1) culminates in lifelong latency in sensory neurons within trigeminal ganglia. The BoHV-1 latency reactivation cycle, including calves latently infected with commercially available modified live vaccines, can lead to reproductive complications, including abortions. Recent studies demonstrated progesterone stimulated BoHV-1 productive infection and sporadically induced reactivation from latency in male rabbits. The progesterone receptor (PR) and progesterone transactivate the immediate early transcription unit 1 (IEtu1) promoter and the infected cell protein 0 (bICP0) early promoter. These viral promoters drive expression of two viral transcriptional regulatory proteins (bICP0 and bICP4) that are crucial for productive infection. Based on these observations, we hypothesize that progesterone induces reactivation in a subset of calves latently infected with BoHV-1. These studies demonstrated progesterone was less efficient than dexamethasone at initiating reactivation from latency in female calves. Notably, heat stress correlated with enhancing the ability of progesterone to induce reactivation from latency. Previous studies demonstrated that heat stress activates the glucocorticoid receptor (GR), which suggested GR activation augments progesterone-mediated reactivation from latency. Additional studies revealed GR and PR cooperatively stimulated productive infection and synergistically transactivated the IEtu1 promoter when cultures were treated with dexamethasone. Mutating one or both GR binding sites in the IEtu1 promoter blocked transactivation. Collectively, these studies indicated that progesterone intermittently triggered reactivation from latency, and heat stress augmented reactivation from reactivation. Finally, these studies suggest progesterone enhances virus spread in tissues and cells where PR is abundantly expressed. IMPORTANCE Steroid hormone fluctuations are predicted to enhance or initiate bovine herpesvirus 1 (BoHV-1) replication and virus spread in cattle. For example, stress increases the incidence of BoHV-1 reactivation from latency in cattle, and the synthetic corticosteroid dexamethasone consistently induces reactivation from latency. The glucocorticoid receptor (GR) and dexamethasone stimulate key viral regulatory promoters and productive infection, in part because the viral genome contains numerous consensus GR-responsive elements (GREs). The progesterone receptor (PR) and GR belong to the type I nuclear hormone receptor family. PR and progesterone specifically bind to and transactivate viral promoters that contain GREs and stimulate BoHV-1 productive infection. Although progesterone did not induce reactivation from latency in female calves as efficiently as dexamethasone, heat stress enhanced progesterone-mediated reactivation from latency. Consequently, we predict that low levels of stressful stimuli can cooperate with progesterone to induce reactivation from latency or promote virus spread.


Subject(s)
Herpesviridae Infections , Herpesvirus 1, Bovine , Progesterone , Animals , Cattle , Dexamethasone/pharmacology , Female , Heat-Shock Response , Herpesviridae Infections/virology , Herpesvirus 1, Bovine/physiology , Male , Progesterone/pharmacology , Rabbits , Receptors, Glucocorticoid/metabolism , Receptors, Progesterone/genetics , Receptors, Progesterone/metabolism , Virus Activation/drug effects , Virus Latency/drug effects
15.
Viruses ; 13(11)2021 11 17.
Article in English | MEDLINE | ID: mdl-34835102

ABSTRACT

Following acute infection, herpes simplex virus 1 (HSV-1) establishes lifelong latency in neurons, including sensory neurons within trigeminal ganglia. During latency, lytic cycle viral gene expression is silenced. However, stressful stimuli can trigger reactivation from latency. The viral tegument protein, VP-16, transactivates all immediate early (IE) promoters during productive infection. Conversely, cellular factors are expected to trigger viral gene expression during early stages of reactivation from latency and in non-neuronal cells that do not support high levels of productive infection. The glucocorticoid receptor (GR), synthetic corticosteroid dexamethasone, and certain stress-induced transcription factors cooperatively transactivate infected cell protein 0 (ICP0) and ICP4 promoters. Since ICP27 protein expression is required for productive infection, we hypothesized that the ICP27 promoter is transactivated by stress-induced transcription factors. New studies have demonstrated that ICP27 enhancer sequences were transactivated by GR and Krüppel-like factor 15 (KLF15). Mutation of a consensus Sp1 binding site within ICP27 enhancer sequences impaired transactivation by GR and KLF15. Chromatin immunoprecipitation studies have demonstrated that GR and KLF15 occupy ICP27 promoter sequences during productive infection. Cells transfected with an ICP27 enhancer fragment revealed the GR and KLF15 occupancy of ICP27 enhancer sequences required the intact Sp1 binding site. Notably, GR and KLF15 form a feed-forward transcription loop in response to stress, suggesting these cellular factors promote viral replication following stressful stimuli.


Subject(s)
Herpes Simplex/immunology , Herpes Simplex/virology , Herpesvirus 1, Human/physiology , Immediate-Early Proteins/immunology , Receptors, Glucocorticoid/immunology , Virus Latency , Animals , Cell Line, Tumor , Chlorocebus aethiops , Chromatin Immunoprecipitation , Gene Expression Regulation, Viral , Kruppel-Like Transcription Factors/immunology , Mice , Transcription Factors , Vero Cells , Virus Activation
16.
Ochsner J ; 21(3): 261-266, 2021.
Article in English | MEDLINE | ID: mdl-34566507

ABSTRACT

Background: Cardiac troponins I and T are highly sensitive and specific markers for acute myocardial infarction (AMI). However, a wide range of non-AMI conditions can also cause significant elevations in cardiac troponins. Given the deleterious impact of misdiagnosis of AMI, the ability to risk-stratify patients who present with an elevated troponin is paramount. We hypothesized that the maximum troponin level would be more predictive of mortality and the diagnosis of AMI than the initial troponin level or change in troponin level. Methods: Patient records from a 9-hospital system (n=30,173) in Texas were reviewed during a 24-month period in 2016-2017. Data collected for patients aged ≥40 years included International Classification of Diseases, Tenth Revision diagnoses, troponin I, demographic data (age, sex, smoking history, and chronic medical conditions), and death during hospitalization. We used logistic regression with the Firth penalized likelihood approach to determine the predictive ability of initial, maximum, and change in troponin level for mortality and the diagnosis of AMI. Results: Demographic characteristics of our cohort included a median age of 70 years, with 48.05% male and 51.95% female. The most common preexisting risk factor was hypertension in 78.81% of the cohort. Notable findings from the logistic regression include the predictive ability of maximum troponin on the odds of death by 0.7% for each unit of increase in troponin value. Also, the odds of AMI increased by 3.1% for each unit of increase in the maximum troponin value. Conclusion: Regardless of the level, a detectable amount of troponin in the serum results in a significantly elevated risk of mortality. Many patients with elevated troponin levels leave the hospital without a specific diagnosis, which can lead to poor outcomes because a detectable troponin does not represent a no-risk population. Our study demonstrates that maximum troponin level is a more sensitive and specific predictor of mortality than initial or change in troponin. Similarly, maximum troponin is the most predictive of AMI vs other causes of troponin elevation, likely because of the correlation between rising troponin levels and cardiomyocyte damage. Further studies are needed to correlate maximum troponin levels and clinical manifestations, which may be helpful in redefining AMI so that AMI can be distinguished more easily from non-AMI diagnoses.

17.
Vitam Horm ; 117: 101-132, 2021.
Article in English | MEDLINE | ID: mdl-34420577

ABSTRACT

Neurotropic α-herpesvirinae subfamily members, herpes simplex virus type 1 (HSV-1) and bovine herpesvirus 1 (BoHV-1), are important viral pathogens in their respective hosts. Following acute infection on mucosal surfaces, these viruses establish life-long latency in neurons within trigeminal ganglia (TG) and central nervous system. Chronic or acute stress (physiological or psychological) increases the frequency of reactivation from latency, which leads to virus shedding, virus transmission, and recurrent disease. While stress impairs immune responses and inflammatory signaling cascades, we predict stressful stimuli directly stimulate viral gene expression and productive infection during early stages of reactivation from latency. For example, BoHV-1 and HSV-1 productive infection is impaired by glucocorticoid receptor (GR) antagonists but is stimulated by the synthetic corticosteroid dexamethasone. Promoters that drive expression of key viral transcriptional regulatory proteins are cooperatively stimulated by GR and specific Krüppel like transcription factors (KLF) induced during stress induced reactivation from latency. The BoHV-1 immediate early transcription unit 1 promoter and contains two GR response elements (GRE) that are essential for cooperative transactivation by GR and KLF15. Conversely, the HSV-1 infected cell protein 0 (ICP0) and ICP4 promoter as well as the BoHV-1 ICP0 early promoter lack consensus GREs: however, these promoters are cooperatively transactivated by GR and KLF4 or KLF15. Hence, growing evidence suggests GR and stress-induced transcription factors directly stimulate viral gene expression and productive infection during early stages of reactivation from latency. We predict the immune inhibitory effects of stress enhance virus spread at late stages during reactivation from latency.


Subject(s)
Herpesviridae Infections , Receptors, Glucocorticoid , Gene Expression Regulation, Viral , Herpesviridae Infections/genetics , Herpesviridae Infections/metabolism , Humans , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Transcription Factors/genetics , Virus Activation/genetics
18.
Commun Biol ; 4(1): 921, 2021 07 29.
Article in English | MEDLINE | ID: mdl-34326461

ABSTRACT

Retinoic acid-inducible gene I (RIG-I) senses viral RNA and instigates an innate immune signaling cascade to induce type I interferon expression. Currently, the regulatory mechanisms controlling RIG-I activation remain to be fully elucidated. Here we show that the FAK family kinase-interacting protein of 200 kDa (FIP200) facilitates RIG-I activation. FIP200 deficiency impaired RIG-I signaling and increased host susceptibility to RNA virus infection. In vivo studies further demonstrated FIP200 knockout mice were more susceptible to RNA virus infection due to the reduced innate immune response. Mechanistic studies revealed that FIP200 competed with the helicase domain of RIG-I for interaction with the two tandem caspase activation and recruitment domains (2CARD), thereby facilitating the release of 2CARD from the suppression status. Furthermore, FIP200 formed a dimer and facilitated 2CARD oligomerization, thereby promoting RIG-I activation. Taken together, our study defines FIP200 as an innate immune signaling molecule that positively regulates RIG-I activation.


Subject(s)
Autophagy-Related Proteins/genetics , Common Cold/prevention & control , Coronavirus OC43, Human/physiology , DEAD Box Protein 58/genetics , Rhabdoviridae Infections/prevention & control , Vesicular stomatitis Indiana virus/physiology , A549 Cells , Animals , Autophagy-Related Proteins/metabolism , Chlorocebus aethiops , Common Cold/metabolism , Coronavirus Infections/metabolism , Coronavirus Infections/prevention & control , DEAD Box Protein 58/metabolism , HEK293 Cells , Humans , Mice , Mice, Knockout , RAW 264.7 Cells , Rhabdoviridae Infections/metabolism , Vero Cells , Vesicular Stomatitis/metabolism , Vesicular Stomatitis/prevention & control
19.
J Virol ; 95(20): e0076821, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34319779

ABSTRACT

Following bovine herpesvirus 1 (BoHV-1) acute infection of ocular, oral, or nasal cavities, sensory neurons within trigeminal ganglia are an important site for latency. Stress, as mimicked by the synthetic corticosteroid dexamethasone, consistently induces reactivation from latency. Expression of two key viral transcriptional regulatory proteins, BoHV-1 infected cell protein 0 (bICP0) and bICP4, are regulated by sequences within the immediate early promoter (IEtu1). A separate early promoter also drives bICP0 expression, presumably to ensure sufficient levels of this important transcriptional regulatory protein. Productive infection and bICP0 early promoter activity are cooperatively transactivated by Krüppel-like factor 4 (KLF4) and a type I nuclear hormone receptor (NHR), androgen receptor, glucocorticoid receptor, or progesterone receptor. The bICP0 early promoter contains three separate transcriptional enhancers that mediate cooperative transactivation. In contrast to the IEtu1 promoter, the bICP0 early promoter lacks consensus type I NHR binding sites. Consequently, we hypothesized that KLF4 and Sp1 binding sites are essential for type I NHR and KLF4 to transactivate the bICP0 promoter. Mutating KLF4 and Sp1 binding sites in each enhancer domain significantly reduced transactivation by KLF4 and a type I NHR. Chromatin immunoprecipitation (ChIP) studies demonstrated that occupancy of bICP0 early promoter sequences by KLF4 and type I NHR is significantly reduced when KLF4 and/or Sp1 binding sites are mutated. These studies suggest that cooperative transactivation of the bICP0 E promoter by type I NHRs and a stress-induced pioneer transcription factor (KLF4) promote viral replication and spread in neurons or nonneural cells in reproductive tissue. IMPORTANCE Understanding how stressful stimuli and changes in the cellular milieu mediate viral replication and gene expression in the natural host is important for developing therapeutic strategies that impair virus transmission and disease. For example, bovine herpesvirus 1 (BoHV-1) reactivation from latency is consistently induced by the synthetic corticosteroid dexamethasone, which mimics the effects of stress. Furthermore, BoHV-1 infection increases the incidence of abortion in pregnant cows, suggesting that sex hormones stimulate viral growth in certain tissues. Previous studies revealed that type I nuclear hormone receptors (NHRs) (androgen, glucocorticoid, or progesterone) and a pioneer transcription factor, Krüppel-like factor 4 (KLF4), cooperatively transactivate the BoHV-1 infected cell protein 0 (bICP0) early promoter. Transactivation was mediated by Sp1 and/or KLF4 consensus binding sites within the three transcriptional enhancers. These studies underscore the complexity by which BoHV-1 exploits type I NHR fluctuations to enhance viral gene expression, replication, and transmission in the natural host.


Subject(s)
Herpesvirus 1, Bovine/metabolism , Trans-Activators/genetics , Ubiquitin-Protein Ligases/genetics , A549 Cells , Animals , Binding Sites , Gene Expression Regulation, Viral/genetics , Herpesviridae Infections/virology , Herpesvirus 1, Bovine/genetics , Humans , Immediate-Early Proteins/metabolism , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/metabolism , Mice , Promoter Regions, Genetic/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Trans-Activators/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism , Viral Proteins/metabolism , Virus Activation/genetics , Virus Latency/genetics , Virus Replication
20.
Viruses ; 13(6)2021 06 15.
Article in English | MEDLINE | ID: mdl-34203849

ABSTRACT

Expression of Krüppel-like factor 15 (KLF15), a stress-induced transcription factor, is induced during bovine herpesvirus 1 (BoHV-1) reactivation from latency, and KLF15 stimulates BoHV-1 replication. Transient transfection studies revealed that KLF15 and glucocorticoid receptor (GR) cooperatively transactivate the BoHV-1-immediate-early transcription unit 1 (IEtu1), herpes simplex virus type 1 (HSV-1) infected cell protein 0 (ICP0), and ICP4 promoters. The IEtu1 promoter drives expression of bICP0 and bICP4, two key BoHV-1 transcriptional regulatory proteins. Based on these studies, we hypothesized infection is a stressful stimulus that increases KLF15 expression and enhances productive infection. New studies demonstrated that silencing KLF15 impaired HSV-1 productive infection, and KLF15 steady-state protein levels were increased at late stages of productive infection. KLF15 was primarily localized to the nucleus following infection of cultured cells with HSV-1, but not BoHV-1. When cells were transfected with a KLF15 promoter construct and then infected with HSV-1, promoter activity was significantly increased. The ICP0 gene, and to a lesser extent, bICP0 transactivated the KLF15 promoter in the absence of other viral proteins. In contrast, BoHV-1 or HSV-1 encoded VP16 had no effect on KLF15 promoter activity. Collectively, these studies revealed that HSV-1 and BoHV-1 productive infection increased KLF15 steady-state protein levels, which correlated with increased virus production.


Subject(s)
Gene Expression Regulation/genetics , Herpesvirus 1, Bovine/genetics , Herpesvirus 1, Human/genetics , Host Microbial Interactions/genetics , Kruppel-Like Transcription Factors/genetics , Animals , Cattle , Cell Line , Chlorocebus aethiops , Herpesvirus 1, Bovine/metabolism , Herpesvirus 1, Human/metabolism , Humans , Kruppel-Like Transcription Factors/classification , Promoter Regions, Genetic , Vero Cells , Viral Proteins/genetics , Virus Activation , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...