Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters











Publication year range
1.
Org Biomol Chem ; 22(2): 337-347, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38063860

ABSTRACT

The photochemically active sites of the proteins sfGFP66azF and Venus66azF, members of the green fluorescent protein (GFP) family, contain a non-canonical amino acid residue p-azidophenylalanine (azF) instead of Tyr66. The light-induced decomposition of azF at these sites leads to the formation of reactive arylnitrene (nF) intermediates followed by the formation of phenylamine-containing chromophores. We report the first study of the reaction mechanism of the reduction of the arylnitrene intermediates in sfGFP66nF and Venus66nF using molecular modeling methods. The Gibbs energy profiles for the elementary steps of the chemical reaction in sfGFP66nF are computed using molecular dynamics simulations with quantum mechanics/molecular mechanics (QM/MM) potentials. Structures and energies along the reaction pathway in Venus66nF are evaluated using a QM/MM approach. According to the results of the simulations, arylnitrene reduction is coupled with oxidation of the histidine side chain on the His148 residue located near the chromophore.


Subject(s)
Azides , Histidine , Green Fluorescent Proteins/chemistry , Histidine/chemistry , Molecular Dynamics Simulation , Oxidation-Reduction , Coloring Agents , Quantum Theory
2.
Mol Biol Evol ; 40(10)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37738143

ABSTRACT

The RNA-dependent RNA polymerase of the severe acute respiratory syndrome coronavirus 2 virus is error prone, with errors being corrected by the exonuclease (NSP14) proofreading mechanism. However, the mutagenesis and subsequent evolutionary trajectory of the virus is mediated by the delicate interplay of replicase fidelity and environmental pressures. Here, we have shown that a single, distal mutation (F60S) in NSP14 can have a profound impact upon proofreading with an increased accumulation of mutations and elevated evolutionary rate being observed. Understanding the implications of these changes is crucial, as these underlying mutational processes may have important implications for understanding the population-wide evolution of the virus. This study underscores the urgent need for continued research into the replicative mechanisms of this virus to combat its continued impact on global health, through the re-emergence of immuno-evasive variants.

4.
FEBS J ; 290(15): 3812-3827, 2023 08.
Article in English | MEDLINE | ID: mdl-37004154

ABSTRACT

Glycosylation is the most prevalent protein post-translational modification, with a quarter of glycosylated proteins having enzymatic properties. Yet, the full impact of glycosylation on the protein structure-function relationship, especially in enzymes, is still limited. Here, we show that glycosylation rigidifies the important commercial enzyme horseradish peroxidase (HRP), which in turn increases its turnover and stability. Circular dichroism spectroscopy revealed that glycosylation increased holo-HRP's thermal stability and promoted significant helical structure in the absence of haem (apo-HRP). Glycosylation also resulted in a 10-fold increase in enzymatic turnover towards o-phenylenediamine dihydrochloride when compared to its nonglycosylated form. Utilising a naturally occurring site-specific probe of active site flexibility (Trp117) in combination with red-edge excitation shift fluorescence spectroscopy, we found that glycosylation significantly rigidified the enzyme. In silico simulations confirmed that glycosylation largely decreased protein backbone flexibility, especially in regions close to the active site and the substrate access channel. Thus, our data show that glycosylation does not just have a passive effect on HRP stability but can exert long-range effects that mediate the 'native' enzyme's activity and stability through changes in inherent dynamics.


Subject(s)
Protein Processing, Post-Translational , Enzyme Stability , Glycosylation , Catalytic Domain , Spectrometry, Fluorescence
5.
Methods Mol Biol ; 2564: 99-119, 2023.
Article in English | MEDLINE | ID: mdl-36107339

ABSTRACT

Fluorescent proteins have revolutionized cell biology and cell imaging through their use as genetically encoded tags. Structural biology has been pivotal in understanding how their unique fluorescent properties manifest through the formation of the chromophore and how the spectral properties are tuned through interaction networks. This knowledge has in turn led to the construction of novel variants with new and improved properties. Here we describe the process by which fluorescent protein structures are determined, starting from recombinant protein production to structure determination by molecular replacement. We also describe how to incorporate and determine the structures of proteins containing non-natural amino acids. Recent advances in protein engineering have led to reprogramming of the genetic code to allow incorporation of new chemistry at designed residue positions, with fluorescent proteins being at the forefront of structural studies in this area. The impact of such new chemistry on protein structure is still limited; the accumulation of more protein structures will undoubtedly improve our understanding and ability to engineer proteins with new chemical functionality.


Subject(s)
Amino Acids , Genetic Code , Amino Acids/chemistry , Coloring Agents , Crystallization , Protein Engineering/methods , Recombinant Proteins/genetics
6.
Int J Mol Sci ; 23(9)2022 Apr 24.
Article in English | MEDLINE | ID: mdl-35563094

ABSTRACT

Cold active esterases have gained great interest in several industries. The recently determined structure of a family IV cold active esterase (EstN7) from Bacillus cohnii strain N1 was used to expand its substrate range and to probe its commercially valuable substrates. Database mining suggested that triacetin was a potential commercially valuable substrate for EstN7, which was subsequently proved experimentally with the final product being a single isomeric product, 1,2-glyceryl diacetate. Enzyme kinetics revealed that EstN7's activity is restricted to C2 and C4 substrates due to a plug at the end of the acyl binding pocket that blocks access to a buried water-filled cavity. Residues M187, N211 and W206 were identified as key plug forming residues. N211A stabilised EstN7 allowing incorporation of the destabilising M187A mutation. The M187A-N211A double mutant had the broadest substrate range, capable of hydrolysing a C8 substrate. W206A did not appear to have any significant effect on substrate range either alone or when combined with the double mutant. Thus, the enzyme kinetics and engineering together with a recently determined structure of EstN7 provide new insights into substrate specificity and the role of acyl binding pocket plug residues in determining family IV esterase stability and substrate range.


Subject(s)
Esterases , Enzyme Stability , Esterases/metabolism , Kinetics , Substrate Specificity
7.
Open Biol ; 11(12): 210182, 2021 12.
Article in English | MEDLINE | ID: mdl-34847772

ABSTRACT

Here we determined the structure of a cold active family IV esterase (EstN7) cloned from Bacillus cohnii strain N1. EstN7 is a dimer with a classical α/ß hydrolase fold. It has an acidic surface that is thought to play a role in cold-adaption by retaining solvation under changed water solvent entropy at lower temperatures. The conformation of the functionally important cap region is significantly different to EstN7's closest relatives, forming a bridge-like structure with reduced helical content providing greater access to the active site through more than one substrate access tunnel. However, dynamics do not appear to play a major role in cold adaption. Molecular dynamics at different temperatures, rigidity analysis, normal mode analysis and geometric simulations of motion confirm the flexibility of the cap region but suggest that the rest of the protein is largely rigid. Rigidity analysis indicates the distribution of hydrophobic tethers is appropriate to colder conditions, where the hydrophobic effect is weaker than in mesophilic conditions due to reduced water entropy. Thus, it is likely that increased substrate accessibility and tolerance to changes in water entropy are important for of EstN7's cold adaptation rather than changes in dynamics.


Subject(s)
Bacillus/enzymology , Esterases/chemistry , Bacillus/chemistry , Bacterial Proteins/chemistry , Catalytic Domain , Cold Temperature , Crystallography, X-Ray , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Molecular Dynamics Simulation , Protein Conformation , Thermodynamics
8.
Front Chem ; 9: 733550, 2021.
Article in English | MEDLINE | ID: mdl-34422774

ABSTRACT

The formation of protein complexes is central to biology, with oligomeric proteins more prevalent than monomers. The coupling of functionally and even structurally distinct protein units can lead to new functional properties not accessible by monomeric proteins alone. While such complexes are driven by evolutionally needs in biology, the ability to link normally functionally and structurally disparate proteins can lead to new emergent properties for use in synthetic biology and the nanosciences. Here we demonstrate how two disparate proteins, the haem binding helical bundle protein cytochrome b 562 and the ß-barrel green fluorescent protein can be combined to form a heterodimer linked together by an unnatural triazole linkage. The complex was designed using computational docking approaches to predict compatible interfaces between the two proteins. Models of the complexes where then used to engineer residue coupling sites in each protein to link them together. Genetic code expansion was used to incorporate azide chemistry in cytochrome b 562 and alkyne chemistry in GFP so that a permanent triazole covalent linkage can be made between the two proteins. Two linkage sites with respect to GFP were sampled. Spectral analysis of the new heterodimer revealed that haem binding and fluorescent protein chromophore properties were retained. Functional coupling was confirmed through changes in GFP absorbance and fluorescence, with linkage site determining the extent of communication between the two proteins. We have thus shown here that is possible to design and build heterodimeric proteins that couple structurally and functionally disparate proteins to form a new complex with new functional properties.

9.
Biomolecules ; 11(7)2021 06 29.
Article in English | MEDLINE | ID: mdl-34209628

ABSTRACT

Here, we report the controlled assembly of SWCNT-GFP hybrids employing DNA as a linker. Two distinct, enriched SWCNTs chiralities, (6,5), (7,6), and an unsorted SWCNT solution, were selectively functionalized with DNA and hybridized to a complementary GFPDNA conjugate. Atomic force microscopy images confirmed that GFP attachment occurred predominantly at the terminal ends of the nanotubes, as designed. The electronic coupling of the proteins to the nanotubes was confirmed via in-solution fluorescence spectroscopy, that revealed an increase in the emission intensity of GFP when linked to the CNTs.


Subject(s)
Biosensing Techniques/methods , DNA/chemistry , Nanotubes, Carbon/chemistry , Proteins/chemistry , Microscopy, Atomic Force/methods
10.
Angew Chem Int Ed Engl ; 60(37): 20184-20189, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34270157

ABSTRACT

The ability to detect proteins through gating conductance by their unique surface electrostatic signature holds great potential for improving biosensing sensitivity and precision. Two challenges are: (1) defining the electrostatic surface of the incoming ligand protein presented to the conductive surface; (2) bridging the Debye gap to generate a measurable response. Herein, we report the construction of nanoscale protein-based sensing devices designed to present proteins in defined orientations; this allowed us to control the local electrostatic surface presented within the Debye length, and thus modulate the conductance gating effect upon binding incoming protein targets. Using a ß-lactamase binding protein (BLIP2) as the capture protein attached to carbon nanotube field effect transistors in different defined orientations. Device conductance had influence on binding TEM-1, an important ß-lactamase involved in antimicrobial resistance (AMR). Conductance increased or decreased depending on TEM-1 presenting either negative or positive local charge patches, demonstrating that local electrostatic properties, as opposed to protein net charge, act as the key driving force for electrostatic gating. This, in turn can, improve our ability to tune the gating of electrical biosensors toward optimized detection, including for AMR as outlined herein.


Subject(s)
Biosensing Techniques , Nanotubes, Carbon/chemistry , Proteins/chemistry , Semiconductors , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL