Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Gastroenterology ; 165(1): 173-186, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37061168

ABSTRACT

BACKGROUND & AIMS: Pancreatitis is a disease continuum, starting with acute pancreatitis (AP) and progressing in some cases to recurrent acute pancreatitis (RAP) and chronic pancreatitis (CP). Currently, there are no approved therapies or early diagnostic or prognostic biomarkers for pancreatitis. The current study examined whether patient serum immune profiling could identify noninvasive biomarkers and provide mechanistic insight into the disease continuum of pancreatitis. METHODS: Using Olink immunoassay, we assessed the protein levels of 92 immune markers in serum samples from participants enrolled in the Prospective Evaluation of Chronic Pancreatitis for Epidemiologic and Translational Studies (PROCEED) study of the Chronic Pancreatitis, Diabetes, and Pancreatic Cancer (CPDPC) consortium. Samples (N = 231) were obtained from individuals without pancreatic disease (n = 56) and from those with chronic abdominal pain (CAP) (n = 24), AP (n = 38), RAP (n = 56), and CP (n = 57). RESULTS: A total of 33 immune markers differentiated the combined pancreatitis groups from controls. Immune markers related to interleukin (IL) 17 signaling distinguished CP from AP and RAP. Similarly, the serum level of IL17A and C-C motif chemokine ligand 20 differentiated CP from CAP, suggesting the involvement of T helper 17 cells in CP pathogenesis. The receiver operator characteristic curve with 2 immune markers (IL17A and sulfotransferase 1A1) could differentiate CP from CAP (optimistic area under the curve = 0.78). The macrophage classical activation pathway elevated along the continuum of pancreatitis, suggesting an accumulation of proinflammatory signals over disease progression. Several immune markers were associated with smoking, alcohol, and diabetes status. CONCLUSIONS: Immune profiling of serum samples from a large pancreatitis cohort led to identifying distinct immune markers that could serve as potential biomarkers to differentiate the varying pancreatitis disease states. In addition, the finding of IL17 signaling in CP could provide insight into the immune mechanisms underlying disease progression.


Subject(s)
Diabetes Mellitus , Pancreatitis, Chronic , Humans , Acute Disease , Pancreatitis, Chronic/diagnosis , Pancreatitis, Chronic/epidemiology , Disease Progression , Abdominal Pain , Biomarkers
2.
Pancreas ; 51(7): 723-732, 2022 08 01.
Article in English | MEDLINE | ID: mdl-36395395

ABSTRACT

OBJECTIVES: Chronic pancreatitis (CP) is a chronic fibroinflammatory condition of the pancreas difficult to diagnose in early stages. Novel biomarkers useful to facilitate early diagnosis or treatment responses may be found in biofluids. Although saliva can be easily and noninvasively collected from patients, useful salivary biomarkers from CP patients have not yet been identified. METHODS: Here, we analyzed the proteome by quantitative proteomics, cytokine/chemokine levels by Luminex analysis, prostaglandin E2 (PGE2) levels by a mass spectrometry-based assay, and bacterial species diversity by 16S ribosomal ribonucleic acid sequencing in saliva samples from confirmed CP patients and healthy controls. RESULTS: Our results indicate the presence of various differentially expressed proteins, cytokines/chemokines, and a loss of oral bacterial diversity in the saliva of CP patients. The PGE2 levels trend toward elevation in CP patients. Area under the receiver operating characteristic curve models for proteomic, cytokine, and PGE2 assays ranged from 0.59 to 0.90. CONCLUSIONS: Collectively, our studies identify a range of putative CP biomarkers and alterations in human saliva requiring further validation. The biomarker discovery approaches we used might lead to identification of biomarkers useful for CP diagnosis and monitoring.


Subject(s)
Dinoprostone , Pancreatitis, Chronic , Humans , Proteomics/methods , Cytokines , Biomarkers, Tumor/metabolism , Pancreatitis, Chronic/diagnosis
3.
Gastroenterology ; 161(6): 2014-2029.e14, 2021 12.
Article in English | MEDLINE | ID: mdl-34450180

ABSTRACT

BACKGROUND AND AIMS: Acute pancreatitis (AP) is an inflammatory disease with mild to severe course that is associated with local and systemic complications and significant mortality. Uncovering inflammatory pathways that lead to progression and recovery will inform ways to monitor and/or develop effective therapies. METHODS: We performed single-cell mass Cytometry by Time Of Flight (CyTOF) analysis to identify pancreatic and systemic inflammatory signals during mild AP (referred to as AP), severe AP (SAP), and recovery using 2 independent experimental models and blood from patients with AP and recurrent AP. Flow cytometric validation of monocytes subsets identified using CyTOF analysis was performed independently. RESULTS: Ly6C+ inflammatory monocytes were the most altered cells in the pancreas during experimental AP, recovery, and SAP. Deep profiling uncovered heterogeneity among pancreatic and blood monocytes and identified 7 novel subsets during AP and recovery, and 6 monocyte subsets during SAP. Notably, a dynamic shift in pancreatic CD206+ macrophage population was observed during AP and recovery. Deeper profiling of the CD206+ macrophage identified 7 novel subsets during AP, recovery, and SAP. Differential expression analysis of these novel monocyte and CD206+ macrophage subsets revealed significantly altered surface (CD44, CD54, CD115, CD140a, CD196, podoplanin) and functional markers (interferon-γ, interleukin 4, interleukin 22, latency associated peptide-transforming growth factor-ß, tumor necrosis factor-α, T-bet, RoRγt) that were associated with recovery and SAP. Moreover, a targeted functional analysis further revealed distinct expression of pro- and anti-inflammatory cytokines by pancreatic CD206+ macrophage subsets as the disease either progressed or resolved. Similarly, we identified heterogeneity among circulating classical inflammatory monocytes (CD14+CD16-) and novel subsets in patients with AP and recurrent AP. CONCLUSIONS: We identified several novel monocyte/macrophage subsets with unique phenotype and functional characteristics that are associated with AP, recovery, and SAP. Our findings highlight differential innate immune responses during AP progression and recovery that can be leveraged for future disease monitoring and targeting.


Subject(s)
Immunity, Innate , Macrophages/immunology , Monocytes/immunology , Pancreas/immunology , Pancreatitis/immunology , Animals , Biomarkers/blood , Cell Separation , Disease Models, Animal , Female , Flow Cytometry , Humans , Immunophenotyping , Macrophages/metabolism , Mice, Inbred BALB C , Monocytes/metabolism , Pancreas/metabolism , Pancreatitis/blood , Pancreatitis/diagnosis , Phenotype , Recovery of Function , Severity of Illness Index , Time Factors
4.
J Pediatr ; 238: 33-41.e4, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34273357

ABSTRACT

OBJECTIVES: To utilize a Luminex platform to examine multiple cytokines simultaneously as well as clinical laboratory testing to identify markers that predict acute pancreatitis severity in the pediatric population on admission. STUDY DESIGN: Patients (<19 years of age) prospectively enrolled over a 4-year period in a single institution acute pancreatitis database were included in separate derivation and validation cohorts. Plasma samples were obtained within 48 hours of admission and stored for analysis. Samples from mild acute pancreatitis and severe acute pancreatitis (moderately severe and severe combined) were analyzed using Luminex panels and C-reactive protein (CRP) testing. RESULTS: The derivation cohort examined 62 cytokines in 66 subject samples (20 control, 36 mild acute pancreatitis, 10 severe acute pancreatitis) and identified interleukin 6 (IL-6) (P = .02) and monocyte chemotactic protein-1 (MCP-1) (P = .02) as cytokines that were differentially expressed between mild and severe acute pancreatitis. Our validation cohort analyzed 76 cytokines between 10 controls, 19 mild acute pancreatitis, and 6 severe acute pancreatitis subjects. IL-6 (P = .02) and MCP-1 (P = .007) were again found to differentiate mild acute pancreatitis from severe acute pancreatitis. CRP values were obtained from 53 of the subjects, revealing a strong association between elevated CRP values and progression to severe disease (P < .0001). CONCLUSIONS: This study identified and validated IL-6 and MCP-1 as predictors of severe acute pancreatitis using 2 distinct cohorts and showed that CRP elevation is a marker of progression to severe acute pancreatitis. These biomarkers have not been extensively studied in the pediatric acute pancreatitis population. Our data allows for risk-stratification of patients with acute pancreatitis, and represent novel insight into the immunologic response in severe acute pancreatitis.


Subject(s)
Chemokine CCL2/blood , Interleukin-6/blood , Pancreatitis/blood , Receptors, Immunologic/blood , Adolescent , Biomarkers/blood , Blood Urea Nitrogen , Child , Disease Progression , Female , Humans , Male , Pancreatitis/diagnosis , Prospective Studies , ROC Curve
5.
Am J Pathol ; 187(12): 2726-2743, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28935577

ABSTRACT

Knowledge of the molecular mechanisms of acute pancreatitis is largely based on studies using rodents. To assess similar mechanisms in humans, we performed ex vivo pancreatitis studies in human acini isolated from cadaveric pancreata from organ donors. Because data on these human acinar preparations are sparse, we assessed their functional integrity and cellular and organellar morphology using light, fluorescence, and electron microscopy; and their proteome by liquid chromatography-tandem mass spectrometry. Acinar cell responses to the muscarinic agonist carbachol (CCh) and the bile acid taurolithocholic acid 3-sulfate were also analyzed. Proteomic analysis of acini from donors of diverse ethnicity showed similar profiles of digestive enzymes and proteins involved in translation, secretion, and endolysosomal function. Human acini preferentially expressed the muscarinic acetylcholine receptor M3 and maintained physiological responses to CCh for at least 20 hours. As in rodent acini, human acini exposed to toxic concentrations of CCh and taurolithocholic acid 3-sulfate responded with trypsinogen activation, decreased cell viability, organelle damage manifest by mitochondrial depolarization, disordered autophagy, and pathological endoplasmic reticulum stress. Human acini also secreted inflammatory mediators elevated in acute pancreatitis patients, including IL-6, tumor necrosis factor-α, IL-1ß, chemokine (C-C motif) ligands 2 and 3, macrophage inhibitory factor, and chemokines mediating neutrophil and monocyte infiltration. In conclusion, human cadaveric pancreatic acini maintain physiological functions and have similar pathological responses and organellar disorders with pancreatitis-causing treatments as observed in rodent acini.


Subject(s)
Acinar Cells , Cell Culture Techniques , Pancreatitis , Acinar Cells/cytology , Acinar Cells/metabolism , Cadaver , Cells, Cultured , Humans , Pancreas/cytology , Pancreas/metabolism , Pancreatitis/metabolism , Pancreatitis/pathology , Proteomics
6.
J Biol Chem ; 292(19): 7828-7839, 2017 05 12.
Article in English | MEDLINE | ID: mdl-28242757

ABSTRACT

Zymogen secretory granules in pancreatic acinar cells express two vesicle-associated membrane proteins (VAMP), VAMP2 and -8, each controlling 50% of stimulated secretion. Analysis of secretion kinetics identified a first phase (0-2 min) mediated by VAMP2 and second (2-10 min) and third phases (10-30 min) mediated by VAMP8. Induction of acinar pancreatitis by supramaximal cholecystokinin (CCK-8) stimulation inhibits VAMP8-mediated mid- and late-phase but not VAMP2-mediated early-phase secretion. Elevation of cAMP during supramaximal CCK-8 mitigates third-phase secretory inhibition and acinar damage caused by the accumulation of prematurely activated trypsin. VAMP8-/- acini are resistant to secretory inhibition by supramaximal CCK-8, and despite a 4.5-fold increase in total cellular trypsinogen levels, are fully protected from intracellular trypsin accumulation and acinar damage. VAMP8-mediated secretion is dependent on expression of the early endosomal proteins Rab5, D52, and EEA1. Supramaximal CCK-8 (60 min) caused a 60% reduction in the expression of D52 followed by Rab5 and EEA1 in isolated acini and in in vivo The loss of D52 occurred as a consequence of its entry into autophagic vacuoles and was blocked by lysosomal cathepsin B and L inhibition. Accordingly, adenoviral overexpression of Rab5 or D52 enhanced secretion in response to supramaximal CCK-8 and prevented accumulation of activated trypsin. These data support that acute inhibition of VAMP8-mediated secretion during pancreatitis triggers intracellular trypsin accumulation and loss of the early endosomal compartment. Maintaining anterograde endosomal trafficking during pancreatitis maintains VAMP8-dependent secretion, thereby preventing accumulation of activated trypsin.


Subject(s)
Pancreatitis/metabolism , R-SNARE Proteins/metabolism , Trypsin/chemistry , Animals , Endosomes/metabolism , Female , Kinetics , Male , Mice , Mice, Inbred C57BL , Pancreas/metabolism , Rats , Rats, Sprague-Dawley , Trypsinogen/chemistry , Vesicular Transport Proteins/metabolism , rab5 GTP-Binding Proteins/metabolism
7.
Cell Mol Gastroenterol Hepatol ; 1(6): 695-709, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26618189

ABSTRACT

BACKGROUND & AIMS: Pancreatic acinar cells have an expanded apical endosomal system, the physiological and pathophysiological significance of which is still emerging. Phosphatidylinositol-3,5-bisphosphate (PI(3,5)P2) is an essential phospholipid generated by PIKfyve, which phosphorylates phosphatidylinositol-3-phosphate (PI(3)P). PI(3,5)P2 is necessary for maturation of early endosomes (EE) to late endosomes (LE). Inhibition of EE to LE trafficking enhances anterograde endosomal trafficking and secretion at the plasma membrane by default through a recycling endosome (RE) intermediate. We assessed the effects of modulating PIKfyve activity on apical trafficking and pancreatitis responses in pancreatic acinar cells. METHODS: Inhibition of EE to LE trafficking was achieved using pharmacological inhibitors of PIKfyve, expression of dominant negative PIKfyve K1877E, or constitutively active Rab5-GTP Q79L. Anterograde endosomal trafficking was manipulated by expression of constitutively active and dominant negative Rab11a mutants. The effects of these agents on secretion, endolysosomal exocytosis of lysosome associated membrane protein (LAMP1), and trypsinogen activation in response to high-dose CCK-8, bile acids and cigarette toxin was determined. RESULTS: PIKfyve inhibition increased basal and stimulated secretion. Adenoviral overexpression of PIKfyve decreased secretion leading to cellular death. Expression of Rab5-GTP Q79L or Rab11a-GTP Q70L enhanced secretion. Conversely, dominant-negative Rab11a-GDP S25N reduced secretion. High-dose CCK inhibited endolysosomal exocytosis that was reversed by PIKfyve inhibition. PIKfyve inhibition blocked intracellular trypsin accumulation and cellular damage responses to high CCK-8, tobacco toxin, and bile salts in both rodent and human acini. CONCLUSIONS: These data demonstrate that EE-LE trafficking acutely controls acinar secretion and the intracellular activation of zymogens leading to the pathogenicity of acute pancreatitis.

8.
Am J Physiol Gastrointest Liver Physiol ; 309(6): G431-42, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26185331

ABSTRACT

Stimulation of digestive organs by enteric peptides is lost during total parental nutrition (PN). Here we examine the role of the enteric peptide bombesin (BBS) in stimulation of the exocrine and endocrine pancreas during PN. BBS protects against exocrine pancreas atrophy and dysfunction caused by PN. BBS also augments circulating insulin levels, suggesting an endocrine pancreas phenotype. While no significant changes in gross endocrine pancreas morphology were observed, pancreatic islets isolated from BBS-treated PN mice showed a significantly enhanced insulin secretion response to the glucagon-like peptide-1 (GLP-1) agonist exendin-4, correlating with enhanced GLP-1 receptor expression. BBS itself had no effect on islet function, as reflected in low expression of BBS receptors in islet samples. Intestinal BBS receptor expression was enhanced in PN with BBS, and circulating active GLP-1 levels were significantly enhanced in BBS-treated PN mice. We hypothesized that BBS preserved islet function indirectly, through the enteroendocrine cell-pancreas axis. We confirmed the ability of BBS to directly stimulate intestinal enteroid cells to express the GLP-1 precursor preproglucagon. In conclusion, BBS preserves the exocrine and endocrine pancreas functions during PN; however, the endocrine stimulation is likely indirect, through the enteroendocrine cell-pancreas axis.


Subject(s)
Bombesin/pharmacology , Gastrin-Releasing Peptide/analogs & derivatives , Islets of Langerhans/drug effects , Pancreas, Exocrine/drug effects , Parenteral Nutrition/adverse effects , Amylases/metabolism , Animals , DNA/metabolism , Food, Formulated , Gene Expression Regulation , Hyperglycemia/blood , Islets of Langerhans/anatomy & histology , Lipase/metabolism , Male , Mice , Mice, Inbred ICR , Pancreas, Exocrine/anatomy & histology , Pancreatic Hormones/metabolism
9.
J Biol Chem ; 289(40): 28040-53, 2014 Oct 03.
Article in English | MEDLINE | ID: mdl-25138214

ABSTRACT

Acinar cell zymogen granules (ZG) express 2 isoforms of the vesicle-associated membrane protein family (VAMP2 and -8) thought to regulate exocytosis. Expression of tetanus toxin to cleave VAMP2 in VAMP8 knock-out (-/-) acini confirmed that VAMP2 and -8 are the primary VAMPs for regulated exocytosis, each contributing ∼50% of the response. Analysis of VAMP8(-/-) acini indicated that although stimulated secretion was significantly reduced, a compensatory increase in constitutive secretion maintained total secretion equivalent to wild type (WT). Using a perifusion system to follow secretion over time revealed VAMP2 mediates an early rapid phase peaking and falling within 2-3 min, whereas VAMP8 controls a second prolonged phase that peaks at 4 min and slowly declines over 20 min to support the protracted secretory response. VAMP8(-/-) acini show increased expression of the endosomal proteins Ti-VAMP7 (2-fold) and Rab11a (4-fold) and their redistribution from endosomes to ZGs. Expression of GDP-trapped Rab11a-S25N inhibited secretion exclusively from the VAMP8 but not the VAMP2 pathway. VAMP8(-/-) acini also showed a >90% decrease in the early endosomal proteins Rab5/D52/EEA1, which control anterograde trafficking in the constitutive-like secretory pathway. In WT acini, short term (14-16 h) culture also results in a >90% decrease in Rab5/D52/EEA1 and a complete loss of the VAMP8 pathway, whereas VAMP2-secretion remains intact. Remarkably, rescue of Rab5/D52/EEA1 expression restored the VAMP8 pathway. Expressed D52 shows extensive colocalization with Rab11a and VAMP8 and partially copurifies with ZG fractions. These results indicate that robust trafficking within the constitutive-like secretory pathway is required for VAMP8- but not VAMP2-mediated ZG exocytosis.


Subject(s)
Endosomes/metabolism , Exocytosis , R-SNARE Proteins/metabolism , Secretory Pathway , Secretory Vesicles/metabolism , Acinar Cells/metabolism , Animals , Endosomes/genetics , Male , Mice, Inbred C57BL , Mice, Knockout , Protein Transport , R-SNARE Proteins/genetics , Secretory Vesicles/genetics , Vesicle-Associated Membrane Protein 2/genetics , Vesicle-Associated Membrane Protein 2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...