Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Synth Biol ; 13(3): 958-962, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38377571

ABSTRACT

Lanthanides, a series of 15 f-block elements, are crucial in modern technology, and their purification by conventional chemical means comes at a significant environmental cost. Synthetic biology offers promising solutions. However, progress in developing synthetic biology approaches is bottlenecked because it is challenging to measure lanthanide binding with current biochemical tools. Here we introduce LanTERN, a lanthanide-responsive fluorescent protein. LanTERN was designed based on GCaMP, a genetically encoded calcium indicator that couples the ion binding of four EF hand motifs to increased GFP fluorescence. We engineered eight mutations across the parent construct's four EF hand motifs to switch specificity from calcium to lanthanides. The resulting protein, LanTERN, directly converts the binding of 10 measured lanthanides to 14-fold or greater increased fluorescence. LanTERN development opens new avenues for creating improved lanthanide-binding proteins and biosensing systems.


Subject(s)
Lanthanoid Series Elements , Lanthanoid Series Elements/metabolism , Calcium/metabolism , Proteins
2.
Nat Rev Microbiol ; 22(6): 345-359, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38253793

ABSTRACT

Microorganisms are a promising means to address many societal sustainability challenges owing to their ability to thrive in diverse environments and interface with the microscale chemical world via diverse metabolic capacities. Synthetic biology can engineer microorganisms by rewiring their regulatory networks or introducing new functionalities, enhancing their utility for target applications. In this Review, we provide a broad, high-level overview of various research efforts addressing sustainability challenges through synthetic biology, emphasizing foundational microbiological research questions that can accelerate the development of these efforts. We introduce an organizational framework that categorizes these efforts along three domains - factory, farm and field - that are defined by the extent to which the engineered microorganisms interface with the natural external environment. Different application areas within the same domain share many fundamental challenges, highlighting productive opportunities for cross-disciplinary collaborations between researchers working in historically disparate fields.


Subject(s)
Synthetic Biology , Synthetic Biology/methods , Bacteria/genetics , Bacteria/metabolism , Metabolic Engineering/methods
3.
J Biol Eng ; 12: 23, 2018.
Article in English | MEDLINE | ID: mdl-30386425

ABSTRACT

A primary objective of synthetic biology is the construction of genetic circuits with behaviors that can be predicted based on the properties of the constituent genetic parts from which they are built. However a significant issue in the construction of synthetic genetic circuits is a phenomenon known as context dependence in which the behavior of a given part changes depending on the choice of adjacent or nearby parts. Interactions between parts compromise the modularity of the circuit, impeding the implementation of predictable genetic constructs. To address this issue, investigators have devised genetic insulators that prevent these unintended context-dependent interactions between neighboring parts. One of the most commonly used insulators in bacterial systems is the self-cleaving ribozyme RiboJ. Despite its utility as an insulator, there has been no systematic quantitative assessment of the effect of RiboJ on the expression level of downstream genetic parts. Here, we characterized the impact of insulation with RiboJ on expression of a reporter gene driven by a promoter from a library of 24 frequently employed constitutive promoters in an Escherichia coli model system. We show that, depending on the strength of the promoter, insulation with RiboJ increased protein abundance between twofold and tenfold and increased transcript abundance by an average of twofold. This result demonstrates that genetic insulators in E. coli can impact the expression of downstream genes, information that is essential for the design of predictable genetic circuits and constructs.

SELECTION OF CITATIONS
SEARCH DETAIL
...