Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Metallomics ; 12(1): 8-11, 2020 01 29.
Article in English | MEDLINE | ID: mdl-31913381

ABSTRACT

After exposure to micron-sized TiO2 particles, anatase and/or rutile, Rhodococcus ruber GIN-1 accumulates an increased concentration (2.2 ± 0.2 mg kg-1) of mobilized Ti into its biomass with concomitant decreases in cellular biometals Fe, Zn, and possibly Mn, while levels of Cu and Al are unaffected.


Subject(s)
Rhodococcus/drug effects , Rhodococcus/metabolism , Titanium/pharmacology , Transition Elements/metabolism , Aluminum/metabolism , Biomass , Copper/metabolism , Iron/metabolism , Manganese/metabolism , Zinc/metabolism
2.
Inorg Chem ; 56(3): 1264-1272, 2017 Feb 06.
Article in English | MEDLINE | ID: mdl-28118016

ABSTRACT

The siderophore desferrioxamine B (DFOB) binds Ti(IV) tightly and precludes its hydrolytic precipitation under biologically and environmentally relevant conditions. This interaction of DFOB with Ti(IV) is investigated by using spectro-potentiometric and spectro-photometric titrations, mass spectrometry, isothermal titration calorimetry (ITC), and computational modeling. The data from pH 2-10 suggest two one-proton equilibria among three species, with one species predominating below pH 3.5, a second from pH 3.5 to 8, and a third above pH 8. The latter species is prone to slow hydrolytic precipitation. Electrospray mass spectrometry allowed the detection of [Ti(IV) (HDFOB)]2+ and [Ti(DFOB)]+; these species were assigned as the pH < 3.5 and the 3.5 < pH < 8 species, respectively. The stability constant for Ti(IV)-DFOB was determined by using UV/vis-monitored competition with ethylenediaminetetraacetic acid (EDTA). Taking into consideration the available binding constant of Ti(IV) and EDTA, the data reveal values of log ß111 = 41.7, log ß110 = 38.1, and log ß11-1 = 30.1. The former value was supported by ITC, with the transfer of Ti(IV) from EDTA to DFOB determined to be both enthalpically and entropically favorable. Computational methods yielded a model of Ti-DFOB. The physiological and environmental implications of this tight interaction and the potential role of DFOB in solubilizing Ti(IV) are discussed.


Subject(s)
Deferoxamine/chemistry , Siderophores/chemistry , Titanium/chemistry , Models, Molecular , Molecular Structure , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL
...