Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharmacol ; 807: 1-11, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28438647

ABSTRACT

The α7 nicotinic acetylcholine receptor is thought to play an important role in human cognition. Here we describe the in vivo effects of BMS-902483, a selective potent α7 nicotinic acetylcholine receptor partial agonist, in relationship to α7 nicotinic acetylcholine receptor occupancy. BMS-902483 has low nanomolar affinity for rat and human α7 nicotinic acetylcholine receptors and elicits currents in cells expressing human or rat α7 nicotinic acetylcholine receptors that are about 60% of the maximal acetylcholine response. BMS-902483 improved 24h novel object recognition memory in mice with a minimal effective dose (MED) of 0.1mg/kg and reversed MK-801-induced deficits in a rat attentional set-shifting model of executive function with an MED of 3mg/kg. Enhancement of novel object recognition was blocked by the silent α7 nicotinic acetylcholine receptor agonist, NS6740, demonstrating that activity of BMS-902483 was mediated by α7 nicotinic acetylcholine receptors. BMS-902483 also reversed ketamine-induced deficits in auditory gating in rats, and enhanced ex vivo hippocampal long-term potentiation examined 24h after dosing in mice. Results from an ex vivo brain homogenate binding assay showed that α7 receptor occupancy ranged from 64% (novel object recognition) to ~90% (set shift and gating) at the MED for behavioral and sensory processing effects of BMS-902483.


Subject(s)
Cognition/drug effects , Drug Partial Agonism , Nicotinic Agonists/pharmacology , Quinuclidines/pharmacology , Sensory Gating/drug effects , Spiro Compounds/pharmacology , alpha7 Nicotinic Acetylcholine Receptor/agonists , Animals , Attention/drug effects , Dose-Response Relationship, Drug , HEK293 Cells , Hippocampus/drug effects , Hippocampus/physiology , Humans , Long-Term Potentiation/drug effects , Male , Memory/drug effects , Mice , Rats
2.
PLoS One ; 11(7): e0159996, 2016.
Article in English | MEDLINE | ID: mdl-27467081

ABSTRACT

The development of alpha7 nicotinic acetylcholine receptor agonists is considered a promising approach for the treatment of cognitive symptoms in schizophrenia patients. In the present studies we characterized the novel agent, (2R)-N-(6-(1H-imidazol-1-yl)-4-pyrimidinyl)-4'H-spiro[4-azabicyclo[2.2.2]octane-2,5'-[1,3]oxazol]-2'-amine (BMS-933043), in vitro and in rodent models of schizophrenia-like deficits in cognition and sensory processing. BMS-933043 showed potent binding affinity to native rat (Ki = 3.3 nM) and recombinant human alpha7 nicotinic acetylcholine receptors (Ki = 8.1 nM) and agonist activity in a calcium fluorescence assay (EC50 = 23.4 nM) and whole cell voltage clamp electrophysiology (EC50 = 0.14 micromolar (rat) and 0.29 micromolar (human)). BMS-933043 exhibited a partial agonist profile relative to acetylcholine; the relative efficacy for net charge crossing the cell membrane was 67% and 78% at rat and human alpha7 nicotinic acetylcholine receptors respectively. BMS-933043 showed no agonist or antagonist activity at other nicotinic acetylcholine receptor subtypes and was at least 300 fold weaker at binding to and antagonizing human 5-HT3A receptors (Ki = 2,451 nM; IC50 = 8,066 nM). BMS-933043 treatment i) improved 24 hour novel object recognition memory in mice (0.1-10 mg/kg, sc), ii) reversed MK-801-induced deficits in Y maze performance in mice (1-10 mg/kg, sc) and set shift performance in rats (1-10 mg/kg, po) and iii) reduced the number of trials required to complete the extradimensional shift discrimination in neonatal PCP treated rats performing the intra-dimensional/extradimensional set shifting task (0.1-3 mg/kg, po). BMS-933043 also improved auditory gating (0.56-3 mg/kg, sc) and mismatch negativity (0.03-3 mg/kg, sc) in rats treated with S(+)ketamine or neonatal phencyclidine respectively. Given this favorable preclinical profile BMS-933043 was selected for further development to support clinical evaluation in humans.


Subject(s)
Cognition Disorders/drug therapy , Quinuclidines/therapeutic use , Schizophrenia/drug therapy , Spiro Compounds/therapeutic use , alpha7 Nicotinic Acetylcholine Receptor/agonists , Animals , Cognition Disorders/physiopathology , Drug Evaluation, Preclinical , HEK293 Cells , Humans , Male , Mice , Patch-Clamp Techniques , Quinuclidines/pharmacology , Radioligand Assay , Rats , Schizophrenia/physiopathology , Spiro Compounds/pharmacology
3.
ACS Med Chem Lett ; 7(3): 289-93, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26985317

ABSTRACT

Positive allosteric modulators (PAMs) of the metabotropic glutamate receptor subtype 5 (mGluR5) are of interest due to their potential therapeutic utility in schizophrenia and other cognitive disorders. Herein we describe the discovery and optimization of a novel oxazolidinone-based chemotype to identify BMS-955829 (4), a compound with high functional PAM potency, excellent mGluR5 binding affinity, low glutamate fold shift, and high selectivity for the mGluR5 subtype. The low fold shift and absence of agonist activity proved critical in the identification of a molecule with an acceptable preclinical safety profile. Despite its low fold shift, 4 retained efficacy in set shifting and novel object recognition models in rodents.

4.
Psychopharmacology (Berl) ; 231(4): 673-83, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24057763

ABSTRACT

RATIONALE: Attentional set shifting, a measure of executive function, is impaired in schizophrenia patients. Current standard of care has little therapeutic benefit for treating cognitive dysfunction in schizophrenia; therefore, novel drugs and animal models for testing novel therapies are needed. The NMDA receptor antagonist, MK-801, produces deficits in a rat maze-based set-shifting paradigm, an effect which parallels deficits observed on tests of executive function in schizophrenia patients. Alpha7 nicotinic acetylcholine receptor (nAChR) agonists, currently under clinical development by several companies, show promise in treating cognitive symptoms in schizophrenia patients and can improve cognition in various animal models. OBJECTIVES: The objectives of the present study were to determine whether the MK-801 deficit in set shifting could be reproduced in a drug discovery setting and to determine whether cognitive improvement could be detected for the first time in this task with alpha7 nAChR agonists. RESULTS: The data presented here replicate findings that a systemic injection of the NMDA receptor antagonist MK-801 can induce a deficit in set shifting in rats. Furthermore, the deficit could be reversed by the atypical antipsychotic clozapine as well as by several alpha7 nAch receptor agonists (SSR-180711, PNU-282987, GTS-21) with varying in vitro properties. CONCLUSIONS: Results indicate that the MK-801 set-shift assay is a useful preclinical tool for measuring prefrontal cortical function in rodents and can be used to identify novel mechanisms for the potential treatment of cognitive deficits in schizophrenia.


Subject(s)
Antipsychotic Agents/pharmacology , Attention/drug effects , Cognition Disorders/drug therapy , Set, Psychology , alpha7 Nicotinic Acetylcholine Receptor/agonists , Animals , Benzamides/pharmacology , Benzylidene Compounds/pharmacology , Bridged Bicyclo Compounds/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Clozapine/pharmacology , Cognition Disorders/chemically induced , Cognition Disorders/etiology , Dizocilpine Maleate , Dose-Response Relationship, Drug , Drug Discovery/methods , Male , Maze Learning/drug effects , Neuropsychological Tests , Pyridines/pharmacology , Rats , Rats, Sprague-Dawley , Schizophrenia/complications , Schizophrenia/drug therapy
5.
Psychopharmacology (Berl) ; 188(4): 629-40, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17004085

ABSTRACT

RATIONALE: Alzheimer's dementia (AD) patients have profound deficits in cognitive and social functions, mediated in part by a decline in cholinergic function. Acetylcholinesterase inhibitors (AChEI) are the most commonly prescribed treatment for the cognitive deficits in AD patients, but their therapeutic effects are small, and it is still not clear if they primarily affect attention, memory, or some other cognitive/behavioral functions. OBJECTIVES: The objective of the present experiments was to explore the effects of donepezil (Aricepttrade mark), an AChEI, on behavioral deficits related exclusively to cholinergic dysfunction. MATERIALS AND METHODS: The effects of donepezil were assessed in Sprague-Dawley rats with scopolamine-induced deficits in a battery of cognitive/behavioral tests. RESULTS: Scopolamine produced deficits in contextual and cued fear conditioning, the 5-choice serial reaction time test, delayed nonmatching to position, the radial arm maze, and the Morris water maze. Analyses of the pattern and size of the effects revealed that donepezil produced very large effects on scopolamine-induced deficits in psychomotor function (approximately 20-50% of the variance), moderate-sized effects on scopolamine-induced deficits in simple conditioning and attention (approximately 3-10% of the variance), but only small effects on scopolamine-induced deficits in higher cognitive functions of working memory and spatial mapping (approximately 1% of the variance). CONCLUSIONS: These results are consistent with the limited efficacy of donepezil on higher cognitive function in AD patients, and suggest that preclinical behavioral models could be used not only to determine if novel treatments have some therapeutic potential, but also to predict more precisely what the pattern and size of the effects might be.


Subject(s)
Cholinesterase Inhibitors/pharmacology , Cognition Disorders/drug therapy , Indans/pharmacology , Piperidines/pharmacology , Psychomotor Disorders/drug therapy , Animals , Attention/drug effects , Cognition Disorders/chemically induced , Conditioning, Psychological/drug effects , Donepezil , Male , Maze Learning/drug effects , Memory/drug effects , Muscarinic Antagonists , Psychomotor Disorders/chemically induced , Rats , Rats, Sprague-Dawley , Scopolamine
SELECTION OF CITATIONS
SEARCH DETAIL
...