Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Chem Rec ; 23(1): e202200180, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36149036

ABSTRACT

Scientists are often inspired by nature, where naturally occurring morphologies, such as those that resemble animals and plants, can be created in the lab. In this review, we have provided an overview on complex superstructures of animals, plants and some similar shapes from the natural world. We begin this review with a discussion about the formation of various animal-like shapes from small organic molecules and polymers, and then move onto plants and other selected shapes. Literature surveys reveal that most of the polymers studied tend to form micellar structures, with some exceptions. Nevertheless, small organic molecules tend to form not only micellar structures but also other animal shapes such as worms and caterpillars. These superstructures tend to have high surface areas and variable surface morphology, making them very useful material for applications in various field such as catalysis, solar cells, and biomedicine, amongst others.

2.
Langmuir ; 38(15): 4633-4644, 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35377655

ABSTRACT

Ionic liquids are versatile solvents that can be tailored through modification of the cation and anion species. Relatively little is known about the corrosive properties of protic ionic liquids. In this study, we have explored the corrosion of both zinc and copper within a series of protic ionic liquids consisting of alkylammonium or alkanolammonium cations paired with nitrate or carboxylate anions along with three aprotic imidazolium ionic liquids for comparison. Electrochemical studies revealed that the presence of either carboxylate anions or alkanolammonium cations tend to induce a cathodic shift in the corrosion potential. The effect in copper was similar in magnitude for both cations and anions, while the anion effect was slightly more pronounced than that of the cation in the case of zinc. For copper, the presence of carboxylate anions or alkanolammonium cations led to a notable decrease in corrosion current, whereas an increase was typically observed for zinc. The ionic liquid-metal surface interactions were further explored for select protic ionic liquids on copper using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) to characterize the interface. From these studies, the oxide species formed on the surface were identified, and copper speciation at the surface linked to ionic liquid and potential dependent surface passivation. Density functional theory and ab initio molecular dynamics simulations revealed that the ethanolammonium cation was more strongly bound to the copper surface than the ethylammonium counterpart. In addition, the nitrate anion was more tightly bound than the formate anion. These likely lead to competing effects on the process of corrosion: the tightly bound cations act as a source of passivation, whereas the tightly bound anions facilitate the electrodissolution of the copper.

3.
Chem Soc Rev ; 50(17): 9845-9998, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34308940

ABSTRACT

In this review, we describe the developments in the field of naphthalene diimides (NDIs) from 2016 to the presentday. NDIs are shown to be an increasingly interesting class of molecules due to their electronic properties, large electron deficient aromatic cores and tendency to self-assemble into functional structures. Almost all NDIs possess high electron affinity, good charge carrier mobility, and excellent thermal and oxidative stability, making them promising candidates for applications in organic electronics, photovoltaic devices, and flexible displays. NDIs have also been extensively studied due to their potential real-world uses across a wide variety of applications including supramolecular chemistry, sensing, host-guest complexes for molecular switching devices, such as catenanes and rotaxanes, ion-channels, catalysis, and medicine and as non-fullerene accepters in solar cells. In recent years, NDI research with respect to supramolecular assemblies and mechanoluminescent properties has also gained considerable traction. Thus, this review will assist a wide range of readers and researchers including chemists, physicists, biologists, medicinal chemists and materials scientists in understanding the scope for development and applicability of NDI dyes in their respective fields through a discussion of the main properties of NDI derivatives and of the status of emerging applications.

4.
J Phys Chem Lett ; 12(2): 919-924, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33439648

ABSTRACT

The optoelectronic properties of functional π-conjugated organic materials are affected by their ability to self-assemble within thin films of devices. There are limited reports that demonstrate the positive impact of self-assembly on the photovoltaic performance of organic solar cells. Here, we demonstrate that hydrogen-bonded supramolecular arrays of a cyanopyridone-based oligothiophene donor, CP6, show notable improvement in photovoltaic performance upon self-assembly into a nanofibrous network. The honeycomb-like blend network exhibited higher hole mobility, leading to efficient charge generation and transport. The photovoltaic performance of CP6 was superior to that of two structural analogues, CP5 and CP1, and was attributed to the enhanced capability of CP6 to self-assemble into a film morphology favorable for BHJ devices. The BHJ devices comprising CP6 and the conventional fullerene acceptor (PC71BM) exhibited an efficiency of 7.26%, which is greater than that of CP5 (5.19%) and CP1 (3.11%) and is among the best-performing, cyanopyridone-based oligothiophene donors described to date.

5.
Chem Rec ; 21(2): 257-283, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33215848

ABSTRACT

Mimicking natural objects such as flowers, is an objective of scientists not only because of their attractive appearance, but also to understand the natural phenomena that underpin real world applications such as drug delivery, enzymatic reactions, electronics, and catalysis, to name few. This article reviews the types, preparation methods, and structural features of flower-like structures along with their key applications in various fields. We discuss the various types of flower-like structures composed of inorganic, organic-inorganic hybrid, inorganic-protein, inorganic-enzyme and organic compositions. We also discuss recent development in flower-like structures prepared by self-assembly approaches. Finally, we conclude our review with the future prospects of flower-like micro-structures in key fields, being biomedicine, sensing and catalysis.


Subject(s)
Flowers , Molecular Mimicry , Molecular Structure , Inorganic Chemicals/chemistry , Organic Chemicals/chemistry
6.
J Colloid Interface Sci ; 558: 310-322, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31605933

ABSTRACT

Tailored synthesis of heterostructures for low temperature (sub 200 °C) CO2 sensing continues to be a challenging task. The present study demonstrates CO2 sensing characteristics of CaO-ZnO heterostructures achieved by zinc hydroxide carbonate (Zn5(CO3)2(OH)6) conversion to ZnO using Ca(OH)2 at 50 °C. Control samples namely, Zn5(CO3)2(OH)6, Ca(OH)2, ZnO, and CaO integrated microsensors exhibited low sensitivity towards CO2 gas. However, CaO-ZnO heterostructures demonstrated significant sensitivity (26 to 91%) at 150 °C for gas concentration ranging from 100 to 10000 ppm, respectively. In this study, zinc hydroxide carbonate sensitized with 25 wt% Ca(OH)2 to form CaO-ZnO heterostructures (25CaZMS) displayed a promising sensitivity (77%) and selectivity (98%) towards 500 ppm CO2 gas. Moreover, the selectivity studies were conducted in the presence of 10 commonly found gases and their sensing performance was compared against CO2 gas in dry and humid conditions. The developed CaO-ZnO sensor exhibited faster kinetics in comparison to the control samples. Improved sensing performance observed here is attributed to the low-temperature synthesis route which resulted in a large number of active pores and high surface area morphology. Additionally, the high CO2 adsorption capacity of CaO combined with compatible n-type semiconductors in forming highly dynamic nano-interfaced heterostructure is a promising step towards developing a precise CO2 gas microsensor.

7.
Molecules ; 24(22)2019 Nov 18.
Article in English | MEDLINE | ID: mdl-31752075

ABSTRACT

The fabrication of controlled supramolecular nanostructures via self-assembly of protoporphyrin IX (PPIX) was studied with enantiomerically pure l-arginine and d-arginine, and we have shown that stoichiometry controlled the morphology formed. The nanostructure morphology was mainly influenced by the delicate balance of π-π stacking interactions between PPIX cores, as well as H-bonding between the deprotonated acidic head group of PPIX with the guanidine head group of arginine. PPIX self-assembled with l-/d-arginine to create rose-like nanoflower structures for four equivalents of arginine that were 5-10 µm in length and 1-4 µm diameter. We employed UV-vis, fluorescence spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), dynamic light scattering (DLS) and Fourier transform infrared spectroscopy (FT-IR) techniques to characterize the resulting self-assembled nanostructures. Furthermore, we investigated the catalytic activity of PPIX and arginine co-assembled materials. The fabricated PPIX-arginine nanostructure showed high enhancement of photocatalytic activity through degradation of rhodamine B (RhB) with a decrease in dye concentration of around 78-80% under simulated visible radiation.


Subject(s)
Arginine/chemistry , Nanoparticles/chemistry , Protoporphyrins/chemistry , Catalysis , Light , Water
8.
ChemistryOpen ; 8(9): 1154-1166, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31497469

ABSTRACT

Aminoglycosides, a class of antibiotics that includes gentamicin, kanamycin, neomycin, streptomycin, tobramycin and apramycin, are derived from various streptomyces species. Despite the significant increase in the antibacterial resistant pathogens, aminoglycosides remain an important class of antimicrobial drugs due to their unique chemical structure which offers a broad spectrum of activity. The modification of antibiotics and their subsequent use in supramolecular chemistry is rarely reported. Given the importance of aminoglycosides, here we give a brief overview on the modification of 4,5- and 4,6-disubstituted deoxystreptamine classes of aminoglycosides through supramolecular chemistry and their potential for real world applications. We also make the case that the work in this area is gaining momentum, and there are significant opportunities to meet the challenges of modern antibiotics through the modification of aminoglycosides by harnessing the advantages of supramolecular chemistry.

9.
ACS Omega ; 4(7): 11408-11413, 2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31460245

ABSTRACT

Supramolecular self-assembly of an octaphosphonate tetraphenyl porphyrin with three different nucleobases (adenine, cytosine, and thymine) was studied. Porphyrin 1 with 8 and 10 equiv of cytosine produces light-harvesting ring-like structures, that is, architectures similar to those observed in natural light-harvesting antenna. However, porphyrin assembled with adenine or thymine resulted in prisms and microrods, respectively. UV-vis absorption, fluorescence, and dynamic light scattering were used to determine the mode of aggregation in solution. Scanning electron microscopy and X-ray diffraction spectroscopy used to visualize the self-assembled nanostructures and their behavior in the solid state, respectively. Thus, we believe that this study may demonstrate a deeper understanding on how one needs to manipulate donor/acceptor subunits in supramolecular assemblies to construct artificial antenna architectures.

10.
J Colloid Interface Sci ; 540: 563-571, 2019 Mar 22.
Article in English | MEDLINE | ID: mdl-30677609

ABSTRACT

A strategy is described for the direct preparation of Au nanoparticles (AuNPs) on a Fe-based support, coated with porous carbon (PC), via pyrolysis of an AuCN functionalised Prussian Blue (PB) metal organic framework (MOF). The composite starting material was prepared with an even distribution of AuCN on the surface via galvanic exchange of PB with a gold salt in solution. The resulting structures after pyrolysis were shown to be active Au-based nanomaterials for model applications including catalysis (4-nitrophenol reduction) and electroanalysis (arsenic (III) detection), suggesting broad application where Au nanoparticles are required at a liquid-solid interface. The Fe based support was seen to consist of Fe, Fe3C and Fe4C phases, and the carbon coating increased the stability and improved the conductivity of the materials. The temperature of pyrolysis was seen to affect the activity of the supported nanoparticles, with an increased Au surface area obtained at the higher pyrolysis temperature (650 °C) tested. A general strategy is thus confirmed for preparation of noble metal nanoparticles evenly distributed on a magnetic support, allowing easy separation of catalysts from products in heterogeneous applications.

11.
ACS Appl Mater Interfaces ; 10(15): 12189-12216, 2018 Apr 18.
Article in English | MEDLINE | ID: mdl-29043778

ABSTRACT

This Review provides a comprehensive analysis of recent development in the field of aggregation-induced emission (AIE)-active tetraphenylethylene (TPE) luminophores and their applications in biomolecular science. It begins with a discussion of the diverse range of structural motifs that have found particular applications in sensing, and demonstrates that TPE structures and their derivatives have been used for a diverse range of analytes such as such as H+, anions, cations, heavy metals, organic volatiles, and toxic gases. Advances are discussed in depth where TPE is utilized as a mechanoluminescent material in bioinspired receptor units with specificity for analytes for such as glucose or RNA. The rapid advances in sensor research make this summary of recent developments in AIE-active TPE luminophores timely, in order to disseminate the advantages of these materials for sensing of analytes in solution, as well as the importance of solid and aggregated states in controlling sensing behavior.

12.
Sci Rep ; 7(1): 16501, 2017 11 28.
Article in English | MEDLINE | ID: mdl-29184066

ABSTRACT

A charge-transfer (CT) complex self-assembled from an electron acceptor (NDI-EA: naphthalene diimide with appended diamine) and an electron donor (DAN: phosphonic acid-appended dialkoxynapthalene) in aqueous medium. The aromatic core of the NDI and the structure of DAN1 were designed to optimize the dispersive interactions (π-π and van der Waals interactions) in the DAN1-NDI-EA self-assembly, while the amino groups of NDI also interact with the phosphonic acid of DAN1 via electrostatic forces. This arrangement prevented crystallization and favored the directional growth of 3D flower nanostructures. This molecular geometry that is necessary for charge transfer to occur was further evidenced by using a mismatching DAN2 structure. The flower-shaped assembly was visualized by scanning electron and transmission electron microscopy. The formation of the CT complex was determined by UV-vis and cyclic voltammetry and the photoinduced electron transfer to produce the radical ion pair was examined by femtosecond laser transient absorption spectroscopic measurements.

13.
Sensors (Basel) ; 17(6)2017 Jun 05.
Article in English | MEDLINE | ID: mdl-28587257

ABSTRACT

A graphene nanoplate-supported spinel CuFe2O4 composite (GNPs/CuFe2O4) was successfully synthesized by using a facile thermal decomposition route. Scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Electron Dispersive Spectroscopy (EDS), X-ray diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) were employed to characterize the prepared composite. The arsenic adsorption behavior of the GNPs/CuFe2O4 composite was investigated by carrying out batch experiments. Both the Langmuir and Freundlich models were employed to describe the adsorption isotherm, where the sorption kinetics of arsenic adsorption by the composite were found to be pseudo-second order. The selectivity of the adsorbent toward arsenic over common metal ions in water was also demonstrated. Furthermore, the reusability and regeneration of the adsorbent were investigated by an assembled column filter test. The GNPs/CuFe2O4 composite exhibited significant, fast adsorption of arsenic over a wide range of solution pHs with exceptional durability, selectivity, and recyclability, which could make this composite a very promising candidate for effective removal of arsenic from aqueous solution. The highly sensitive adsorption of the material toward arsenic could be potentially employed for arsenic sensing.

14.
ACS Omega ; 2(1): 218-226, 2017 Jan 31.
Article in English | MEDLINE | ID: mdl-31457223

ABSTRACT

Graphene nanoplates (GNPs) can be used as a platform for homogeneous distribution of adsorbent nanoparticles to improve electron exchange and ion transport for heavy-metal adsorption. In this study, we report a facile thermal decomposition route to fabricate a graphene-supported Fe-Mg oxide composite. The prepared composite was characterized using scanning electron microscopy, transmission electron microscopy, energy-dispersive spectrometry, X-ray diffraction, and X-ray photoelectron spectroscopy. Batch experiments were carried out to evaluate the arsenic adsorption behavior of the GNP/Fe-Mg oxide composite. Both the Langmuir and Freundlich models were employed to describe the adsorption isotherm, in which the sorption kinetics of the arsenic adsorption process by the composite was found to be pseudo-second-order. Furthermore, the reusability and regeneration of the adsorbent were investigated by an assembled-column filter test. The GNP/Fe-Mg oxide composite exhibited significant fast adsorption of arsenic over a wide range of solution pHs, with exceptional durability and recyclability, which could make this composite a very promising candidate for effective removal of arsenic from aqueous solutions.

15.
Photochem Photobiol Sci ; 16(2): 151-154, 2017 02 15.
Article in English | MEDLINE | ID: mdl-27976777

ABSTRACT

In this communication, we have investigated the arginine-induced fabrication of porphyrin (TCPP)-based supramolecular nanostructures. These self-assembled porphyrin nanostructures such as nanobelts show enhanced photocatalytic activity for the photodegradation of pollutant Rhodamine B under simulated visible-light irradiation.


Subject(s)
Arginine/chemistry , Nanostructures/chemistry , Photolysis/radiation effects , Porphyrins/chemistry , Sunlight , Catalysis , Microscopy, Electron, Transmission , Rhodamines/chemistry , Spectrophotometry, Ultraviolet , X-Ray Diffraction
16.
Langmuir ; 31(30): 8519-29, 2015 Aug 04.
Article in English | MEDLINE | ID: mdl-26169072

ABSTRACT

Microelectromechanical sensors based on surface acoustic wave (SAW) and quartz crystal microbalance (QCM) transducers possess substantial potential as online elemental mercury (Hg(0)) vapor detectors in industrial stack effluents. In this study, a comparison of SAW- and QCM-based sensors is performed for the detection of low concentrations of Hg(0) vapor (ranging from 24 to 365 ppbv). Experimental measurements and finite element method (FEM) simulations allow the comparison of these sensors with regard to their sensitivity, sorption and desorption characteristics, and response time following Hg(0) vapor exposure at various operating temperatures ranging from 35 to 75 °C. Both of the sensors were fabricated on quartz substrates (ST and AT cut quartz for SAW and QCM devices, respectively) and employed thin gold (Au) layers as the electrodes. The SAW-based sensor exhibited up to ∼111 and ∼39 times higher response magnitudes than did the QCM-based sensor at 35 and 55 °C, respectively, when exposed to Hg(0) vapor concentrations ranging from 24 to 365 ppbv. The Hg(0) sorption and desorption calibration curves of both sensors were found to fit well with the Langmuir extension isotherm at different operating temperatures. Furthermore, the Hg(0) sorption and desorption rate demonstrated by the SAW-based sensor was found to decrease as the operating temperature increased, while the opposite trend was observed for the QCM-based sensor. However, the SAW-based sensor reached the maximum Hg(0) sorption rate faster than the QCM-based sensor regardless of operating temperature, whereas both sensors showed similar response times (t90) at various temperatures. Additionally, the sorption rate data was utilized in this study in order to obtain a faster response time from the sensor upon exposure to Hg(0) vapor. Furthermore, comparative analysis of the developed sensors' selectivity showed that the SAW-based sensor had a higher overall selectivity (90%) than did the QCM counterpart (84%) while Hg(0) vapor was measured in the presence of ammonia (NH3), humidity, and a number of volatile organic compounds at the chosen operating temperature of 55 °C.


Subject(s)
Gold/chemistry , Mercury/chemistry , Micro-Electrical-Mechanical Systems , Quartz Crystal Microbalance Techniques , Sound , Adsorption , Particle Size , Surface Properties
17.
Analyst ; 140(16): 5508-17, 2015 Aug 21.
Article in English | MEDLINE | ID: mdl-26065560

ABSTRACT

The detection of elemental mercury (Hg(0)) within industrial processes is extremely important as it is the first major step in ensuring the efficient operation of implemented mercury removal technologies. In this study, a 131 MHz surface acoustic wave (SAW) delay line sensor with gold electrodes was tested towards Hg(0) vapor (24 to 365 ppbv) with/without the presence of ammonia (NH3) and humidity (H2O), as well as volatile organic compounds (VOCs) such as acetaldehyde (MeCHO), ethylmercaptan (EM), dimethyl disulfide (DMDS) and methyl ethyl ketone (MEK), which are all common interfering gas species that co-exist in many industrial applications requiring mercury monitoring. The developed sensor exhibited a detection limit of 0.7 ppbv and 4.85 ppbv at 35 and 55 °C, respectively. Furthermore, a repeatability of 97% and selectivity of 92% in the presence of contaminant gases was exhibited by the sensor at the chosen operating temperature of 55 °C. The response magnitude of the developed SAW sensor towards different concentrations of Hg(0) vapor fitted well with the Langmuir extension isotherm (otherwise known as loading ratio correlation (LRC)) which is in agreement with our basic finite element method (FEM) work where an LRC isotherm was observed for a simplified model of the SAW sensor responding to different Hg contents deposited on the Au based electrodes. Overall, the results indicate that the developed SAW sensor can be a potential solution for online selective detection of low concentrations of Hg(0) vapor found in industrial stack effluents.


Subject(s)
Electrodes , Gases/analysis , Gold/chemistry , Mercury/analysis , Models, Theoretical , Sound , Volatile Organic Compounds/chemistry
18.
J Org Chem ; 80(8): 3832-40, 2015 Apr 17.
Article in English | MEDLINE | ID: mdl-25822257

ABSTRACT

Supramolecular self-assembly and self-organization are simple and convenient ways to design and create controlled assemblies with organic molecules, and they have provoked great interest due to their potential applications in various fields, such as electronics, photonics, and light-energy conversion. Herein, we describe the synthesis of two π-conjugated porphyrin molecules bearing tetraphenylethene moieties with high fluorescence quantum yield. Photophysical and electrochemical studies were conducted to understand the physical and redox properties of these new materials, respectively. Furthermore, these derivatives were used to investigate self-assembly via the solvophobic effect. The self-assembled aggregation was performed in nonpolar and polar organic solvents and forms nanospheres and ring-like nanostructures, respectively. The solution based aggregation was studied by means of UV-vis absorption, emission, XRD, and DLS analyses. Self-assembled ring-shape structures were visualized by SEM and TEM imaging. This ring-shape morphology of nanosized macromolecules might be a good candidate for the creation of artificial light-harvesting nanodevices.

19.
Chem Commun (Camb) ; 51(21): 4331-46, 2015 Mar 14.
Article in English | MEDLINE | ID: mdl-25649756

ABSTRACT

While the evolution of hydrogen gas is often a troublesome process accompanying electrodeposition, this feature can be exploited to template the growth of highly porous surfaces. This process, known as the dynamic hydrogen bubble template (DHBT) method, can be utilised to create a wide range of macroporous films with nanostructured pore walls. This feature article presents an overview of the status of the DHBT technique, highlighting preparation techniques and emerging applications.

20.
Dalton Trans ; 44(7): 3367-77, 2015 Feb 21.
Article in English | MEDLINE | ID: mdl-25600503

ABSTRACT

Three new ortho-metallated palladium complexes, [Pd(O,O'-hfacac)(κ(2)-2-C6F4PPh2)] (), [Pd2(O,O'-hfacac)2(µ-2-C6F4PPh2)2] () and [Pd(O,O'-hfacac)(κC-2-C6F4PPh2)(PPh3)] () (hfacac = hexafluoroacetylacetonate), have been prepared and fully characterised. The electrochemical reductions of complexes , together with those of other cyclopalladated complexes containing 2-C6R4PPh2 ligands (R = H, F) were studied by cyclic, rotating disk and microelectrode voltammetry. Evidence for the one-electron reduction of [PdI(κ(2)-2-C6F4PPh2)(PPh2Fc)] () was obtained from coulometric analysis, although the product is unstable and undergoes further chemical processes. Preparative electro-reduction of [Pd2(µ-Br)2(κ(2)-2-C6F4PPh2)2] () in CH2Cl2 causes reductive cleavage of its Pd-C σ-bonds and formation of the complex [PdBr2{PPh2(2-C6F4H)}2] (); possible mechanisms are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...