Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Hum Genet ; 111(7): 1271-1281, 2024 07 11.
Article in English | MEDLINE | ID: mdl-38843839

ABSTRACT

There is mounting evidence of the value of clinical genome sequencing (cGS) in individuals with suspected rare genetic disease (RGD), but cGS performance and impact on clinical care in a diverse population drawn from both high-income countries (HICs) and low- and middle-income countries (LMICs) has not been investigated. The iHope program, a philanthropic cGS initiative, established a network of 24 clinical sites in eight countries through which it provided cGS to individuals with signs or symptoms of an RGD and constrained access to molecular testing. A total of 1,004 individuals (median age, 6.5 years; 53.5% male) with diverse ancestral backgrounds (51.8% non-majority European) were assessed from June 2016 to September 2021. The diagnostic yield of cGS was 41.4% (416/1,004), with individuals from LMIC sites 1.7 times more likely to receive a positive test result compared to HIC sites (LMIC 56.5% [195/345] vs. HIC 33.5% [221/659], OR 2.6, 95% CI 1.9-3.4, p < 0.0001). A change in diagnostic evaluation occurred in 76.9% (514/668) of individuals. Change of management, inclusive of specialty referrals, imaging and testing, therapeutic interventions, and palliative care, was reported in 41.4% (285/694) of individuals, which increased to 69.2% (480/694) when genetic counseling and avoidance of additional testing were also included. Individuals from LMIC sites were as likely as their HIC counterparts to experience a change in diagnostic evaluation (OR 6.1, 95% CI 1.1-∞, p = 0.05) and change of management (OR 0.9, 95% CI 0.5-1.3, p = 0.49). Increased access to genomic testing may support diagnostic equity and the reduction of global health care disparities.


Subject(s)
Genetic Testing , Rare Diseases , Whole Genome Sequencing , Humans , Male , Rare Diseases/genetics , Rare Diseases/diagnosis , Female , Child , Genetic Testing/methods , Child, Preschool , Adolescent , Adult , Infant , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/diagnosis
2.
J Clin Med ; 13(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38610677

ABSTRACT

Stress urinary incontinence is a financially burdensome and socially isolating problem and can be experienced by men as a result of radical prostatectomy, radiation therapy, or other urologic surgery. Artificial urinary sphincter (AUS) placement for stress urinary incontinence is considered the 'gold standard' for male stress urinary incontinence. While initially only placed by specialized prosthetic surgeons, changes in urologic training have made implantation of the device by general urologists more widespread. Additionally, even though a minority of urologists place the majority of implants, many urologists may find themselves caring for patients with these devices even if they have never placed them themselves. For this reason, it is paramount that the urologic surgeon implanting the device and those caring for patients with prostheses are familiar with the various perioperative and postoperative complications of AUS implantation. This review discusses the most commonly reported complications of AUS implantation as well as those that are rarely described. Knowledge of these potential complications is necessary in order to care for patients with urologic implants.

SELECTION OF CITATIONS
SEARCH DETAIL