Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Appl ; 31(8): e02446, 2021 12.
Article in English | MEDLINE | ID: mdl-34448316

ABSTRACT

Ecological forecasts will be best suited to inform intervention strategies if they are accessible to a diversity of decision-makers. Researchers are developing intuitive forecasting interfaces to guide stakeholders through the development of intervention strategies and visualization of results. Yet, few studies to date have evaluated how user interface design facilitates the coordinated, cross-boundary management required for controlling biological invasions. We used a participatory approach to develop complementary tangible and online interfaces for collaboratively forecasting biological invasions and devising control strategies. A diverse group of stakeholders evaluated both systems in the real-world context of controlling sudden oak death, an emerging forest disease killing millions of trees in California and Oregon. Our findings suggest that while both interfaces encouraged adaptive experimentation, tangible interfaces are particularly well suited to support collaborative decision-making. Reflecting on the strengths of both systems, we suggest workbench-style interfaces that support simultaneous interactions and dynamic geospatial visualizations.


Subject(s)
Environmental Monitoring/methods , Forecasting , California , Internet , Introduced Species , Oregon , Plant Diseases , Quercus
2.
J Exp Biol ; 219(Pt 23): 3759-3772, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27903629

ABSTRACT

The smallest flying insects commonly possess wings with long bristles. Little quantitative information is available on the morphology of these bristles, and their functional importance remains a mystery. In this study, we (1) collected morphological data on the bristles of 23 species of Mymaridae by analyzing high-resolution photographs and (2) used the immersed boundary method to determine via numerical simulation whether bristled wings reduced the force required to fling the wings apart while still maintaining lift. The effects of Reynolds number, angle of attack, bristle spacing and wing-wing interactions were investigated. In the morphological study, we found that as the body length of Mymaridae decreases, the diameter and gap between bristles decreases and the percentage of the wing area covered by bristles increases. In the numerical study, we found that a bristled wing experiences less force than a solid wing. The decrease in force with increasing gap to diameter ratio is greater at higher angles of attack than at lower angles of attack, suggesting that bristled wings may act more like solid wings at lower angles of attack than they do at higher angles of attack. In wing-wing interactions, bristled wings significantly decrease the drag required to fling two wings apart compared with solid wings, especially at lower Reynolds numbers. These results support the idea that bristles may offer an aerodynamic benefit during clap and fling in tiny insects.


Subject(s)
Biomechanical Phenomena/physiology , Flight, Animal/physiology , Hymenoptera/anatomy & histology , Hymenoptera/physiology , Wings, Animal/anatomy & histology , Animals , Hydrodynamics , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL