Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Lancet Child Adolesc Health ; 6(2): 86-95, 2022 02.
Article in English | MEDLINE | ID: mdl-34871570

ABSTRACT

BACKGROUND: Single-dose tafenoquine 300 mg is approved for Plasmodium vivax malaria relapse prevention in patients at least 16 years old. We aimed to determine appropriate oral tafenoquine paediatric dosing regimens, including a dispersible formulation, and evaluated tafenoquine efficacy and safety in children infected with P vivax. METHODS: This open-label, single-arm, non-comparative, multicentre, pharmacokinetic bridging, phase 2 study enrolled children (2-15 years) who weighed 5 kg or more, with glucose-6-phosphate dehydrogenase activity more than 70% of the local population median, and P vivax malaria infection, from three community health centres in Vietnam and one in Colombia. Patients received 3-day chloroquine plus oral single-dose tafenoquine as dispersible tablets (50 mg) or film-coated tablets (150 mg). Dosing groups were assigned by body weight, predicted to achieve similar median exposures as the approved 300 mg dose for adults: patients who weighed 5 kg or more to 10 kg received 50 mg, those who weighed more than 10 to 20 kg received 100 or 150 mg, those who weighed more than 20 to 35 kg received 200 mg, and patients who weighed more than 35 kg received 300 mg. Population pharmacokinetic analysis was done to develop a paediatric population pharmacokinetic model. The primary outcome was the tafenoquine area under the concentration-time curve extrapolated to infinity (AUC[0-∞]) by patient body weight in the pharmacokinetic population (all patients who received tafenoquine with at least one valid pharmacokinetic sample) estimated from a paediatric population pharmacokinetic model. A key prespecified secondary outcome was 4-month recurrence-free efficacy. This trial is registered with ClinicalTrials.gov, NCT02563496. FINDINGS: Between Feb 6, 2017, and Feb 17, 2020, 60 patients were enrolled into the study: 14 (23%) received tafenoquine 100 mg, five (8%) 150 mg, 22 (36%) 200 mg, and 19 (32%) 300 mg. The paediatric population pharmacokinetic model predicted adequate tafenoquine exposure at all doses. The predicted median AUC(0-∞) was 73·8 (90% prediction interval [PI] 46·9-117·0) µg × h/mL with the 50 mg dose for patients who weighed 5 kg or more to 10 kg, 87·5 (55·4-139·0) µg × h/mL with the 100 mg dose for body weight more than 10 to 20 kg, 110·7 (70·9-174·0) µg × h/mL with the 200 mg dose for body weight more than 20 to 35 kg, and 85·7 (50·6-151·0) µg × h/mL with the 300 mg dose for body weight more than 35 kg. 4-month recurrence-free efficacy was 94·7% (95% CI 84·6-98·3). Adverse events were consistent with previous studies, except for the seven (12%) of 60 patients who had post-dose vomiting or spitting with the 50 mg dispersed tablet. Following mitigation strategies, there were no additional occurrences of this adverse event. There were no deaths during the study. INTERPRETATION: For the prevention of P vivax relapse in children, single-dose tafenoquine, including a dispersible formulation, had exposure, safety, and efficacy consistent with observations in adolescents and adults, notwithstanding post-dose vomiting. FUNDING: GlaxoSmithKline and Medicines for Malaria Venture. TRANSLATIONS: For the Vietnamese and Spanish translations of the abstract see Supplementary Materials section.


Subject(s)
Aminoquinolines/administration & dosage , Aminoquinolines/pharmacokinetics , Aminoquinolines/therapeutic use , Antimalarials/administration & dosage , Antimalarials/pharmacokinetics , Antimalarials/therapeutic use , Malaria, Vivax/drug therapy , Adolescent , Area Under Curve , Child , Child, Preschool , Chloroquine/administration & dosage , Female , Humans , Male , Recurrence , Secondary Prevention , Tablets
2.
Drug Saf ; 42(9): 1103-1114, 2019 09.
Article in English | MEDLINE | ID: mdl-31187437

ABSTRACT

INTRODUCTION: Tafenoquine has been recently registered for the prevention of relapse in Plasmodium vivax malaria. OBJECTIVE: This study assessed the pharmacodynamic effects of 300-mg single-dose tafenoquine on the retina. METHODS: This phase I, prospective, multicenter, randomized, single-masked, placebo-controlled, parallel-group study was conducted between 2 February 2016 and 14 September 2017 at three US study centers. Adult healthy volunteers were randomized (2:1) to receive either a single 300-mg oral dose of tafenoquine or matched placebo on day 1. Ophthalmic assessments, including spectral domain optical coherence tomography (SD-OCT) and fundus autofluorescence (FAF), were conducted at baseline and day 90 and evaluated for pre-determined endpoints by an independent, masked reading center. RESULTS: One subject in each group met the composite primary endpoint for retinal changes identified with SD-OCT or FAF, i.e., one out of 306 (0.3%) with tafenoquine, one out of 161 (0.6%) with placebo. Both cases had unilateral focal ellipsoid zone disruption at day 90 with no effect on best-corrected visual acuity. The tafenoquine-treated subject had this abnormality at baseline, and was enrolled in error. There was no difference in ophthalmic safety between tafenoquine and placebo. CONCLUSION: There was no evidence of any pharmacodynamic effect of 300-mg single-dose tafenoquine on the retina or any short-term clinically relevant effects on ophthalmic safety. This clinical trial is registered with ClinicalTrials.gov (identifier: NCT02658435).


Subject(s)
Aminoquinolines/administration & dosage , Antimalarials/administration & dosage , Retina/drug effects , Visual Acuity/drug effects , Administration, Oral , Adolescent , Adult , Aminoquinolines/adverse effects , Antimalarials/adverse effects , Female , Humans , Male , Middle Aged , Optical Imaging , Prospective Studies , Single-Blind Method , Tomography, Optical Coherence , Young Adult
3.
N Engl J Med ; 380(3): 215-228, 2019 01 17.
Article in English | MEDLINE | ID: mdl-30650322

ABSTRACT

BACKGROUND: Treatment of Plasmodium vivax malaria requires the clearing of asexual parasites, but relapse can be prevented only if dormant hypnozoites are cleared from the liver (a treatment termed "radical cure"). Tafenoquine is a single-dose 8-aminoquinoline that has recently been registered for the radical cure of P. vivax. METHODS: This multicenter, double-blind, double-dummy, parallel group, randomized, placebo-controlled trial was conducted in Ethiopia, Peru, Brazil, Cambodia, Thailand, and the Philippines. We enrolled 522 patients with microscopically confirmed P. vivax infection (>100 to <100,000 parasites per microliter) and normal glucose-6-phosphate dehydrogenase (G6PD) activity (with normal activity defined as ≥70% of the median value determined at each trial site among 36 healthy male volunteers who were otherwise not involved in the trial). All patients received a 3-day course of chloroquine (total dose of 1500 mg). In addition, patients were assigned to receive a single 300-mg dose of tafenoquine on day 1 or 2 (260 patients), placebo (133 patients), or a 15-mg dose of primaquine once daily for 14 days (129 patients). The primary outcome was the Kaplan-Meier estimated percentage of patients who were free from recurrence at 6 months, defined as P. vivax clearance without recurrent parasitemia. RESULTS: In the intention-to-treat population, the percentage of patients who were free from recurrence at 6 months was 62.4% in the tafenoquine group (95% confidence interval [CI], 54.9 to 69.0), 27.7% in the placebo group (95% CI, 19.6 to 36.6), and 69.6% in the primaquine group (95% CI, 60.2 to 77.1). The hazard ratio for the risk of recurrence was 0.30 (95% CI, 0.22 to 0.40) with tafenoquine as compared with placebo (P<0.001) and 0.26 (95% CI, 0.18 to 0.39) with primaquine as compared with placebo (P<0.001). Tafenoquine was associated with asymptomatic declines in hemoglobin levels, which resolved without intervention. CONCLUSIONS: Single-dose tafenoquine resulted in a significantly lower risk of P. vivax recurrence than placebo in patients with phenotypically normal G6PD activity. (Funded by GlaxoSmithKline and Medicines for Malaria Venture; DETECTIVE ClinicalTrials.gov number, NCT01376167 .).


Subject(s)
Aminoquinolines/administration & dosage , Antimalarials/administration & dosage , Malaria, Vivax/drug therapy , Plasmodium vivax , Secondary Prevention/methods , Adolescent , Adult , Aminoquinolines/adverse effects , Antimalarials/adverse effects , Chloroquine/administration & dosage , Cytochrome P-450 CYP2D6/metabolism , Disease-Free Survival , Double-Blind Method , Drug Therapy, Combination , Female , Glucosephosphate Dehydrogenase/metabolism , Hemoglobins/analysis , Humans , Intention to Treat Analysis , Kaplan-Meier Estimate , Logistic Models , Malaria, Vivax/metabolism , Male , Parasitemia/drug therapy , Plasmodium vivax/isolation & purification , Primaquine/administration & dosage
4.
N Engl J Med ; 380(3): 229-241, 2019 01 17.
Article in English | MEDLINE | ID: mdl-30650326

ABSTRACT

BACKGROUND: Tafenoquine, a single-dose therapy for Plasmodium vivax malaria, has been associated with relapse prevention through the clearance of P. vivax parasitemia and hypnozoites, termed "radical cure." METHODS: We performed a phase 3, prospective, double-blind, double-dummy, randomized, controlled trial to compare tafenoquine with primaquine in terms of safety and efficacy. The trial was conducted at seven hospitals or clinics in Peru, Brazil, Colombia, Vietnam, and Thailand and involved patients with normal glucose-6-phosphate dehydrogenase (G6PD) enzyme activity and female patients with moderate G6PD enzyme deficiency; all patients had confirmed P. vivax parasitemia. The patients were randomly assigned, in a 2:1 ratio, to receive a single 300-mg dose of tafenoquine or 15 mg of primaquine once daily for 14 days (administered under supervision); all patients received a 3-day course of chloroquine and were followed for 180 days. The primary safety outcome was a protocol-defined decrease in the hemoglobin level (>3.0 g per deciliter or ≥30% from baseline or to a level of <6.0 g per deciliter). Freedom from recurrence of P. vivax parasitemia at 6 months was the primary efficacy outcome in a planned patient-level meta-analysis of the current trial and another phase 3 trial of tafenoquine and primaquine (per-protocol populations), and an odds ratio for recurrence of 1.45 (tafenoquine vs. primaquine) was used as a noninferiority margin. RESULTS: A protocol-defined decrease in the hemoglobin level occurred in 4 of 166 patients (2.4%; 95% confidence interval [CI], 0.9 to 6.0) in the tafenoquine group and in 1 of 85 patients (1.2%; 95% CI, 0.2 to 6.4) in the primaquine group, for a between-group difference of 1.2 percentage points (95% CI, -4.2 to 5.0). In the patient-level meta-analysis, the percentage of patients who were free from recurrence at 6 months was 67.0% (95% CI, 61.0 to 72.3) among the 426 patients in the tafenoquine group and 72.8% (95% CI, 65.6 to 78.8) among the 214 patients in the primaquine group. The efficacy of tafenoquine was not shown to be noninferior to that of primaquine (odds ratio for recurrence, 1.81; 95% CI, 0.82 to 3.96). CONCLUSIONS: Among patients with normal G6PD enzyme activity, the decline in hemoglobin level with tafenoquine did not differ significantly from that with primaquine. Tafenoquine showed efficacy for the radical cure of P. vivax malaria, although tafenoquine was not shown to be noninferior to primaquine. (Funded by GlaxoSmithKline and Medicines for Malaria Venture; GATHER ClinicalTrials.gov number, NCT02216123 .).


Subject(s)
Aminoquinolines/administration & dosage , Antimalarials/administration & dosage , Malaria, Vivax/drug therapy , Plasmodium vivax , Primaquine/administration & dosage , Secondary Prevention/methods , Adolescent , Adult , Aminoquinolines/adverse effects , Antimalarials/adverse effects , Chloroquine/therapeutic use , Disease-Free Survival , Double-Blind Method , Drug Therapy, Combination , Female , Glucosephosphate Dehydrogenase/metabolism , Glucosephosphate Dehydrogenase Deficiency/complications , Hemoglobins/analysis , Humans , Kaplan-Meier Estimate , Malaria, Vivax/complications , Male , Parasitemia/drug therapy , Plasmodium vivax/isolation & purification , Primaquine/adverse effects , Prospective Studies
5.
Antimicrob Agents Chemother ; 60(12): 7321-7332, 2016 12.
Article in English | MEDLINE | ID: mdl-27697758

ABSTRACT

Tafenoquine is in development as a single-dose treatment for relapse prevention in individuals with Plasmodium vivax malaria. Tafenoquine must be coadministered with a blood schizonticide, either chloroquine or artemisinin-based combination therapy (ACT). This open-label, randomized, parallel-group study evaluated potential drug interactions between tafenoquine and two ACTs: dihydroartemisinin-piperaquine and artemether-lumefantrine. Healthy volunteers of either sex aged 18 to 65 years without glucose-6-phosphate dehydrogenase deficiency were randomized into five cohorts (n = 24 per cohort) to receive tafenoquine on day 1 (300 mg) plus once-daily dihydroartemisinin-piperaquine on days 1, 2, and 3 (120 mg/960 mg for 36 to <75 kg of body weight and 160 mg/1,280 mg for ≥75 to 100 kg of body weight), or plus artemether-lumefantrine (80 mg/480 mg) in two doses 8 h apart on day 1 and then twice daily on days 2 and 3, or each drug alone. The pharmacokinetic parameters of tafenoquine, piperaquine, lumefantrine, artemether, and dihydroartemisinin were determined by using noncompartmental methods. Point estimates and 90% confidence intervals were calculated for area under the concentration-time curve (AUC) and maximum observed plasma concentration (Cmax) comparisons of tafenoquine plus ACT versus tafenoquine or ACT. All subjects receiving dihydroartemisinin-piperaquine experienced QTc prolongation (a known risk with this drug), but tafenoquine coadministration had no clinically relevant additional effect. Tafenoquine coadministration had no clinically relevant effects on dihydroartemisinin, piperaquine, artemether, or lumefantrine pharmacokinetics. Dihydroartemisinin-piperaquine coadministration increased the tafenoquine Cmax by 38% (90% confidence interval, 25 to 52%), the AUC from time zero to infinity (AUC0-∞) by 12% (1 to 26%), and the half-life (t1/2) by 29% (19 to 40%), with no effect on the AUC from time zero to the time of the last nonzero concentration (AUC0-last). Artemether-lumefantrine coadministration had no effect on tafenoquine pharmacokinetics. Tafenoquine can be coadministered with dihydroartemisinin-piperaquine or artemether-lumefantrine without dose adjustment for any of these compounds. (This study has been registered at ClinicalTrials.gov under registration no. NCT02184637.).


Subject(s)
Aminoquinolines/pharmacokinetics , Antimalarials/pharmacokinetics , Artemisinins/pharmacokinetics , Ethanolamines/pharmacokinetics , Fluorenes/pharmacokinetics , Malaria, Vivax/drug therapy , Quinolines/pharmacokinetics , Adolescent , Adult , Aged , Aminoquinolines/adverse effects , Antimalarials/adverse effects , Artemisinins/adverse effects , Drug Interactions , Drug Therapy, Combination , Ethanolamines/adverse effects , Female , Fluorenes/adverse effects , Half-Life , Healthy Volunteers , Humans , Lumefantrine , Male , Middle Aged , Plasmodium vivax/drug effects , Quinolines/adverse effects , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...