Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Naturwissenschaften ; 110(6): 57, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38060057

ABSTRACT

Tyramides are produced in microgram quantities by males of species in the large Myrmicine ant sub-family (> 7000 species). Tyramides are transferred to female sexuals during mating where a specific female sexual evolved enzyme hydrolyzes the tyramides to the biogenic amine, tyramine. Tyramine is a ligand for receptors that rapidly activate reproductive development in the newly mated queen-previously reproductively inhibited by the mother queen. Without this elaborate biogenic amine precursor and co-evolved female sexual derived tyramide hydrolase, the defenseless newly mated queen's worker production would be delayed by up to 6 days, which could be lethal to the new queen. This is one of possibly several ant species separation mechanisms evolved to maintain species integrity. Here we report two methyl-branched tyramides from harvester ant, Pogonomyrmex badius, males, including one highly branched tyramide not previously reported.


Subject(s)
Ants , Tyramine , Animals , Male , Female , Biogenic Amines , Ants/physiology , Reproduction/physiology
2.
Insects ; 14(6)2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37367367

ABSTRACT

Since its discovery in North America in 2014, the spotted lanternfly (SLF), Lycorma delicatula, has become an economic, ecological, and nuisance pest there. Developing early detection and monitoring tools is critical to their mitigation and control. Previous research found evidence that SLF may use pheromones to help locate each other for aggregation or mating. Pheromone production necessitates specific conditions by the insects, and these must be investigated and described. A chemical process called photo-degradation has been described as a final step in the production of pheromones in several diurnal insect species, in which cuticular hydrocarbons were broken down by sunlight into volatile pheromone components. In this study, photo-degradation was investigated as a possible pheromone production pathway for SLF. Extracts from SLF mixed-sex third and fourth nymphs and male or female adults were either exposed to simulated sunlight to produce a photo-degradative reaction (photo-degraded), or not exposed to light (crude), while volatiles were collected. Behavioral bioassays tested for attraction to volatiles from photo-degraded and crude samples and their residues. In third instars, only the volatile samples from photo-degraded mixed-sex extracts were attractive. Fourth instar males were attracted to both crude and photo-degraded residues, and volatiles of photo-degraded mixed-sex extracts. Fourth instar females were attracted to volatiles of crude and photo-degraded mixed-sex extracts, but not to residues. In adults, only males were attracted to body volatiles from crude and photo-degraded extracts of either sex. Examination of all volatile samples using gas chromatography coupled with mass spectrometry (GC-MS) revealed that most of the identified compounds in photo-degraded extracts were also present in crude extracts. However, the abundance of these compounds in photo-degraded samples were 10 to 250 times more than their abundance in the crude counterparts. Results from behavioral bioassays indicate that photo-degradation probably does not generate a long-range pheromone, but it may be involved in the production of a short-range sex-recognition pheromone in SLF. This study provides additional evidence of pheromonal activity in SLF.

3.
J Chem Ecol ; 48(9-10): 782-790, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36125647

ABSTRACT

Ants use a variety of semiochemicals for essential activities and have been a source for many novel natural products. While ant taxa produce a wide variety of chemicals, the chemistry and ecology of male ants have remained understudied. Tyramides are a class of compounds that have been found only in males of the Myrmicinae ant subfamily. Tyramides found in the fire ant Solenopsis invicta are transferred to gynes during mating where they are converted to tyramine, leading to rapid reproductive development. To further understand the evolution of tyramide production in male ants, we determined the tyramide composition in males of 15 fungus-growing ant species (Formicidae: Myrmicinae: Attini: Attina) and a Megalomyrmex species (Formicidae: Myrmicinae: Solenopsidini). Thirteen tyramides were identified, four for the first time in natural sources, and their percent composition was mapped to the fungus-growing ant phylogeny.


Subject(s)
Ants , Male , Animals , Fungi , Phylogeny , Reproduction
4.
J Nat Prod ; 85(4): 1134-1140, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35389651

ABSTRACT

Millipedes (Diplopoda) are well known for their toxic or repellent defensive secretions. Here, we describe (6aR,10aS,10bR)-8,8-dimethyldodecahydropyrrolo[2,1-a]isoquinoline [trans-anti-trans-deoxybuzonamine (1a)] and (rel-6aR,10aR,10bR)-8,8-dimethyldodecahydropyrrolo[2,1-a]isoquinoline [trans-syn-cis-deoxybuzonamine (1b)], two isomers of deoxybuzonamine found in the chemical defense secretions of the millipede Brachycybe lecontii Wood (Colobognatha, Platydesmida, Andrognathidae). The carbon-nitrogen skeleton of these compounds was determined from their MS and GC-FTIR spectra obtained from the MeOH extract of whole millipedes, along with a subsequent selective synthesis. Their structures were established from their 1D (1H, 13C) and 2D NMR (COSY, NOESY, multiplicity-edited HSQC, HSQC-TOCSY, HMBC) spectra. Additionally, computational chemistry (DFT and DP4) was used to identify the relative configurations of 1a and 1b by comparing predicted 13C data to their experimental values, and the absolute configuration of 1a was determined by comparing its experimental specific rotation with that of the computationally calculated value. This is the first report of dodecahydropyrrolo[2,1-a]isoquinoline alkaloids from a platydesmidan millipede.


Subject(s)
Arthropods , Animals , Arthropods/chemistry , Isomerism , Magnetic Resonance Spectroscopy , Molecular Structure
5.
Naturwissenschaften ; 109(1): 15, 2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35084590

ABSTRACT

South American fire ants, Solenopsis richteri and Solenopsis invicta, were accidently introduced into the southern USA in the 1900s and 1930s, respectively. The rapid spread and high population densities of S. invicta, and its potent sting, resulted in broad economic impacts and a variety of research efforts. In the 1970s, their venom alkaloids were identified as a complex blend of trans-2-methyl-6-alkyl- and alkenyl-piperidines. Solenopsis geminata is a worldwide tramp species but a native of the southern coastal regions of the USA. It was found to only produce cis- and trans-2-methyl-6-undecyl-piperidines. These alkaloids were considered the Solenopsis ancestral alkaloid profile since they were identified from female sexuals (potential queens) of all Solenopsis species in South and North America. The dramatic modification of alkaloids in Solenopsis invicta was attributed to their response to evolutionary pressure and the lack of change in S. geminata alkaloids due to no response to evolutionary pressure. Here we report the unexpected discovery of 6-undecyl-pyridine, 2-methyl-6-undecyl-pyridine and 2-methyl-6-(1)-undecenyl-pyridine as components of S. geminata worker venom, suggesting that S. geminata like its South American relatives have responded to evolutionary pressures. Our results will stimulate future research on S. geminata populations throughout the tropical/subtropical world.


Subject(s)
Alkaloids , Ants , Animals , Female , North America
6.
Commun Biol ; 4(1): 1400, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34912037

ABSTRACT

Social insect queens have evolved mechanisms to prevent competition from their sexual daughters. For Solenopsis invicta, the fire ant, queens have evolved a primer pheromone that retards reproductive development in their winged reproductive daughters. If these daughters are removed from the influence of the queen, it takes about a week to start reproductive development; however, it starts almost immediately after mating. This dichotomy has been unsuccessfully investigated for several decades. Here we show that male fire ants produce tyramides, derivatives of the biogenic amine tyramine, in their reproductive system. Males transfer tyramides to winged females during mating, where the now newly mated queens enzymatically convert tyramides to tyramine. Tyramine floods the hemolymph, rapidly activating physiological processes associated with reproductive development. Tyramides have been found only in the large Myrmicinae ant sub-family (6,800 species), We suggest that the complex inhibition/disinhibition of reproductive development described here will be applicable to other members of this ant sub-family.


Subject(s)
Ants/physiology , Neurotransmitter Agents/metabolism , Sexual Behavior, Animal , Tyramine/analogs & derivatives , Animals , Female , Male , Reproduction , Tyramine/metabolism
7.
PeerJ ; 9: e11622, 2021.
Article in English | MEDLINE | ID: mdl-34221725

ABSTRACT

The fungus-growing ant Mycetomoellerius (previously Trachymyrmex) zeteki (Weber 1940) has been the focus of a wide range of studies examining symbiotic partners, garden pathogens, mating frequencies, and genomics. This is in part due to the ease of collecting colonies from creek embankments and its high abundance in the Panama Canal region. The original description was based on samples collected on Barro Colorado Island (BCI), Panama. However, most subsequent studies have sampled populations on the mainland 15 km southeast of BCI. Herein we show that two sibling ant species live in sympatry on the mainland: Mycetomoellerius mikromelanos Cardenas, Schultz, & Adams and M. zeteki. This distinction was originally based on behavioral differences of workers in the field and on queen morphology (M. mikromelanos workers and queens are smaller and black while those of M. zeteki are larger and red). Authors frequently refer to either species as "M. cf. zeteki," indicating uncertainty about identity. We used an integrative taxonomic approach to resolve this, examining worker behavior, chemical profiles of worker volatiles, molecular markers, and morphology of all castes. For the latter, we used conventional taxonomic indicators from nine measurements, six extrapolated indices, and morphological characters. We document a new observation of a Diapriinae (Hymenoptera: Diapriidae) parasitoid wasp parasitizing M. zeteki. Finally, we discuss the importance of vouchering in dependable, accessible museum collections and provide a table of previously published papers to clarify the usage of the name T. zeteki. We found that most reports of M. zeteki or M. cf. zeteki-including a genome-actually refer to the new species M. mikromelanos.

8.
Toxins (Basel) ; 12(11)2020 10 29.
Article in English | MEDLINE | ID: mdl-33137918

ABSTRACT

Alkaloids are important metabolites found across a variety of organisms with diverse ecological functions. Of particular interest are alkaloids found in ants, organisms well known for dominating the ecosystems they dwell in. Within ants, alkaloids are found in venom and function as potent weapons against heterospecific species. However, research is often limited to pest species or species with parasitic lifestyles and thus fails to address the broader ecological function of ant venom alkaloids. Here we describe a new species of free-living Megalomyrmex ant: Megalomyrmex peetersi sp. n. In addition, we identify its singular venom alkaloid (trans-2-butyl-5-heptylpyrrolidine) and elucidate the antibiotic and insecticidal functions of its venom. Our results show that Megalomyrmex peetersi sp. n. venom is an effective antibiotic and insecticide. These results are comparable to venom alkaloids found in other ant species, such as Solenopsis invicta. This research provides great insight into venom alkaloid function, and it is the first study to explore these ideas in the Megalomyrmex system.


Subject(s)
Alkaloids/toxicity , Ant Venoms/toxicity , Anti-Bacterial Agents/toxicity , Ants , Insecticides/toxicity , Alkaloids/chemistry , Animals , Ant Venoms/chemistry , Anti-Bacterial Agents/chemistry , Bacteria/drug effects , Bacteria/growth & development , Female , Insecticides/chemistry , Isoptera/drug effects , Lethal Dose 50 , Male
9.
J Nat Prod ; 83(9): 2764-2768, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32915571

ABSTRACT

Millipedes (Diplopoda) are well known for their toxic or repellent defensive secretions. Here we describe gosodesmine (1), 7-(4-methylpent-3-en-1-yl)-1,2,3,5,8,8a-hexahydroindolizine, a unique alkaloid with some terpene character found in the chemical defense secretions of the millipede Gosodesmus claremontus Chamberlin (Colobognatha, Platydesmida, Andrognathidae). The structure of 1 was suggested by its mass spectra and GC-FTIR spectra and established from its 1H, 13C, and 2D NMR spectra and 1D NOE studies. The 7-substituted indolizidine carbon skeleton of 1 was confirmed by unambiguous synthesis. This is the first report of an alkaloid from a platydesmid millipede and the first report of a 7-substituted indolizidine from an arthropod.


Subject(s)
Arthropods/chemistry , Animals , Gas Chromatography-Mass Spectrometry , Magnetic Resonance Spectroscopy , Molecular Structure , Spectroscopy, Fourier Transform Infrared
10.
Fungal Ecol ; 41: 187-197, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31871487

ABSTRACT

Fungivorous millipedes (subterclass Colobognatha) likely represent some of the earliest known mycophagous terrestrial arthropods, yet their fungal partners remain elusive. Here we describe relationships between fungi and the fungivorous millipede, Brachycybe lecontii. Their fungal community is surprisingly diverse, including 176 genera, 39 orders, four phyla, and several undescribed species. Of particular interest are twelve genera conserved across wood substrates and millipede clades that comprise the core fungal community of B. lecontii. Wood decay fungi, long speculated to serve as the primary food source for Brachycybe species, were absent from this core assemblage and proved lethal to millipedes in pathogenicity assays while entomopathogenic Hypocreales were more common in the core but had little effect on millipede health. This study represents the first survey of fungal communities associated with any colobognath millipede, and these results offer a glimpse into the complexity of millipede fungal communities.

11.
Sci Rep ; 8(1): 3209, 2018 02 16.
Article in English | MEDLINE | ID: mdl-29453332

ABSTRACT

With fossil representatives from the Silurian capable of respiring atmospheric oxygen, millipedes are among the oldest terrestrial animals, and likely the first to acquire diverse and complex chemical defenses against predators. Exploring the origin of complex adaptive traits is critical for understanding the evolution of Earth's biological complexity, and chemical defense evolution serves as an ideal study system. The classic explanation for the evolution of complexity is by gradual increase from simple to complex, passing through intermediate "stepping stone" states. Here we present the first phylogenetic-based study of the evolution of complex chemical defenses in millipedes by generating the largest genomic-based phylogenetic dataset ever assembled for the group. Our phylogenomic results demonstrate that chemical complexity shows a clear pattern of escalation through time. New pathways are added in a stepwise pattern, leading to greater chemical complexity, independently in a number of derived lineages. This complexity gradually increased through time, leading to the advent of three distantly related chemically complex evolutionary lineages, each uniquely characteristic of each of the respective millipede groups.


Subject(s)
Adaptation, Biological/genetics , Arthropods/genetics , Biological Evolution , Phylogeny , Animals , Genomics
12.
J Nat Prod ; 81(1): 171-177, 2018 01 26.
Article in English | MEDLINE | ID: mdl-29243929

ABSTRACT

Millipedes (Diplopoda) are well known for their toxic or repellent defensive secretions. As part of a larger investigation, we describe the chemical constituents of 14 species of Tasmanian millipedes in seven genera. Six species in the genus Gasterogramma were found to produce acyclic ketones, including the pungent unsaturated ketones 1, 2, and 6, and the novel (rel-3R,5S,7S)-3,5,7-trimethyl-2,8-decanedione (7b), for which the stereoconfiguration was established by stereoselective syntheses of pairs of isomers. These compounds have not been detected before in millipede defensive secretions. This report is the first on species of the suborder Dalodesmidea (Polydesmida), a dominant component of the soil and litter fauna of the temperate regions of the Southern Hemisphere.


Subject(s)
Arthropods/chemistry , Animals , Ketones/chemistry , Stereoisomerism , Tasmania
13.
PeerJ ; 5: e3957, 2017.
Article in English | MEDLINE | ID: mdl-29085754

ABSTRACT

Three cryptic species in the Euwallacea fornicatus species complex were reared in laboratory colonies and investigated for the presence of pheromones. Collections of volatiles from combinations of diet, fungus, beetles, and galleries from polyphagous shot hole borer (Euwallacea sp. #1) revealed the presence of 2-heneicosanone and 2-tricosanone only in the presence of beetles, regardless of sex. Subsequent examination of volatiles from the other two species, tea shot hole borer (Euwallacea sp. #2) and Kuroshio shot hole borer (Euwallacea sp. #5), revealed these two ketones were present in all three species but in different ratios. In dual choice olfactometer behavioral bioassays, mature mated females were strongly attracted to a synthetic binary blend of ketones matching their own natural ratios. However, females in each species were repelled by ketone blends in ratios corresponding to the other two species. Males of each species responded similarly to females when presented with ratios matching their own or the other two species. The presence of these compounds in the three beetle species, in ratios unique to each species, and their strong species-specific attraction and repellency, suggests they are pheromones. The ecological function of these pheromones is discussed. In addition to the pheromones, the previously known attractant (1S,4R)-p-menth-2-en-1-ol (also known as quercivorol) was discovered in the presence of the fungal symbionts, but not in association with the beetles. Quercivorol was tested in a dual-choice olfactometer and was strongly attractive to all three species. This evidence suggests quercivorol functions as a kairomone for members of the E. fornicatus species complex, likely produced by the symbiotic fungi.

14.
Ecol Evol ; 5(15): 3103-13, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26357539

ABSTRACT

Toxicity and the utilization of venom are essential features in the ecology of many animal species and have been hypothesized to be important factors contributing to the assembly of communities through competitive interactions. Ants of the genus Monomorium utilize a variety of venom compositions, which have been reported to give them a competitive advantage. Here, we investigate two pairs of Monomorium species, which differ in the structural compositions of their venom and their co-occurrence patterns with the invasive Argentine ant. We looked at the effects of Monomorium venom toxicity, venom utilization, and aggressive physical interactions on Monomorium and Argentine ant survival rates during arena trials. The venom toxicity of the two species co-occurring with the invasive Argentine ants was found to be significantly higher than the toxicity of the two species which do not. There was no correlation between venom toxicity and Monomorium survival; however, three of the four Monomorium species displayed significant variability in their venom usage which was associated with the number of Argentine ant workers encountered during trials. Average Monomorium mortality varied significantly between species, and in Monomorium smithii and Monomorium antipodum, aggressive interactions with Argentine ants had a significant negative effect on their mortality. Our study demonstrates that different factors and strategies can contribute to the ability of a species to withstand the pressure of a dominant invader at high abundance, and venom chemistry appears to be only one of several strategies utilized.

15.
J Chem Ecol ; 41(4): 373-85, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25833216

ABSTRACT

Social parasites exploit other societies by invading and stealing resources. Some enter protected nests using offensive chemical weaponry made from alkaloid-based venom. We characterized the venoms of three Megalomyrmex thief ant species (M. mondabora, M. mondaboroides, and M. silvestrii) that parasitize the fungus-growing ants, and developed an ethogram to describe host ant reactions to raiding M. mondaboroides and M. silvestrii parasites. We compared piperidine, pyrrolidine, and pyrolizidine venom alkaloid structures with synthetic samples from previous studies, and describe the novel stereochemistry of trans 2-hexyl-5-[8-oxononyl]-pyrrolidine (3) from M. mondabora. We showed that workers of Cyphomyrmex costatus, the host of M. mondaboroides and M. silvestrii, react to a sting by Megalomyrmex parasites mainly with submissive behavior, playing dead or retreating. Host submission also followed brief antennal contact. The behavior of C. costatus ants observed in this study was similar to that of Cyphomyrmex cornutus, host of M. mondabora, suggesting that the alkaloidal venoms with pyrrolidines from M. mondabora, piperidines from M. mondaboroides, and pyrolizidines from M. silvestrii may function similarly as appeasement and repellent allomones against host ants, despite their different chemical structure. With the use of these chemical weapons, the Megalomyrmex thief ants are met with little host resistance and easily exploit host colony resources.


Subject(s)
Alkaloids/metabolism , Ant Venoms/metabolism , Ants/physiology , Ants/parasitology , Alkaloids/analysis , Animals , Ant Venoms/analysis , Ants/chemistry , Species Specificity
16.
J Chem Ecol ; 40(6): 560-8, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24913905

ABSTRACT

The invasive hemlock woolly adelgid (Adelges tsugae Annand, Hemiptera: Sternorrhyncha: Adelgidae) causes significant mortality to eastern and Carolina hemlock (Tsuga canadensis Carrière and T. caroliniana Engelmann, respectively) throughout the eastern United States. Adelges tsugae produces vast quantities of a wax covering that surrounds most of the instars as well as the adult and eggs. Using direct probe EI mass spectrometry, this wax covering was characterized as a diketoester wax, 17-oxohexatriacontanyl 11-oxotriacontanoate, and accounted for ≈ 42 % of A. tsugae total biomass. The presence of the anthraquinone, chrysophanol, and its precursor anthrone, chrysarobin, in A. tsugae has only been briefly described. Further study confirmed these compounds in all A. tsugae life stages. Additionally, several predatory beetles in use or under consideration as biological control agents for this species appear to ingest and excrete these compounds when feeding on A. tsugae. The production of both a physical and a chemical defense may represent a significant energy investment by A. tsugae.


Subject(s)
Hemiptera/physiology , Waxes/chemistry , Animals , Anthracenes/analysis , Anthraquinones/analysis , Anthraquinones/chemistry , Biological Control Agents , Coleoptera/physiology , Hemiptera/chemistry , Introduced Species , Life Cycle Stages , Predatory Behavior , Tsuga , Waxes/analysis , Waxes/metabolism
17.
Proc Natl Acad Sci U S A ; 110(39): 15752-7, 2013 Sep 24.
Article in English | MEDLINE | ID: mdl-24019482

ABSTRACT

The ants are extraordinary in having evolved many lineages that exploit closely related ant societies as social parasites, but social parasitism by distantly related ants is rare. Here we document the interaction dynamics among a Sericomyrmex fungus-growing ant host, a permanently associated parasitic guest ant of the genus Megalomyrmex, and a raiding agro-predator of the genus Gnamptogenys. We show experimentally that the guest ants protect their host colonies against agro-predator raids using alkaloid venom that is much more potent than the biting defenses of the host ants. Relatively few guest ants are sufficient to kill raiders that invariably exterminate host nests without a cohabiting guest ant colony. We also show that the odor of guest ants discourages raider scouts from recruiting nestmates to host colonies. Our results imply that Sericomyrmex fungus-growers obtain a net benefit from their costly guest ants behaving as a functional soldier caste to meet lethal threats from agro-predator raiders. The fundamentally different life histories of the agro-predators and guest ants appear to facilitate their coexistence in a negative frequency-dependent manner. Because a guest ant colony is committed for life to a single host colony, the guests would harm their own interests by not defending the host that they continue to exploit. This conditional mutualism is analogous to chronic sickle cell anemia enhancing the resistance to malaria and to episodes in human history when mercenary city defenders offered either net benefits or imposed net costs, depending on the level of threat from invading armies.


Subject(s)
Ants/microbiology , Fungi/physiology , Volatile Organic Compounds/metabolism , Animals , Host-Parasite Interactions , Phylogeny , Predatory Behavior , Symbiosis
18.
J Nat Prod ; 75(11): 1930-6, 2012 Nov 26.
Article in English | MEDLINE | ID: mdl-23088730

ABSTRACT

Workers of the ant Carebarella bicolor collected in Panama were found to have two major poison-frog alkaloids, cis- and trans-fused decahydroquinolines (DHQs) of the 269AB type, four minor 269AB isomers, two minor 269B isomers, and three isomers of DHQ 271D. For the first time in an ant, however, the DHQs were accompanied by six histrionicotoxins (HTXs), viz., 283A, 285A, 285B, 285C, 287A, and 287D. This co-occurrence of the HTX and DHQ alkaloids is the usual pattern seen in dendrobatid frogs. This finding contrasts with our earlier study, where workers of a Brazilian ant, Solenopsis (Diplorhoptrum) sp., were found to have a very similar DHQ complex but failed to show HTXs. Several new DHQ alkaloids of MW 271 (named in the frog as 271G) are reported from the above ants that have both m/z 202 and 204 as major fragment ions, unlike the spectrum seen for the poison-frog alkaloid 271D, which has only an m/z 204 base peak. Found also for the first time in skin extracts from the comparison frog Oophaga granulifera of Costa Rica is a trace DHQ of MW 273. It is coded as 273F in the frog; a different isomer is found in the ant.


Subject(s)
Alkaloids/isolation & purification , Alkaloids/pharmacology , Amphibian Venoms/isolation & purification , Amphibian Venoms/pharmacology , Ants/chemistry , Anura/metabolism , Poisons , Quinolines/isolation & purification , Quinolines/pharmacology , Alkaloids/chemistry , Amphibian Venoms/chemistry , Animals , Brazil , Costa Rica , Molecular Structure , Panama , Quinolines/chemistry , Skin/drug effects , Stereoisomerism
19.
Naturwissenschaften ; 99(7): 583-6, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22722375

ABSTRACT

The nonnative hemlock woolly adelgid (Adelges tsugae Annand, Hemiptera: Sternorrhyncha: Adelgidae) has been a significant mortality agent of eastern hemlock (Tsuga canadensis Carriere) throughout a large portion of its geographic range. During a study investigating adelgid vigor in relation to host health, it was noted that adelgid extracts ranged from a yellow to a deep red color. Analysis by GC-MS identified the presence of the anthraquinone, chrysophanol and its anthrone precursor, chrysarobin in the extract. These compounds are predator deterrents in several other insects, including chrysomelid beetles. It is hypothesized that these compounds serve a similar purpose in the hemlock woolly adelgid.


Subject(s)
Hemiptera/chemistry , Animals , Anthracenes/chemistry , Anthracenes/isolation & purification , Anthraquinones/chemistry , Anthraquinones/isolation & purification , Gas Chromatography-Mass Spectrometry , Hemlock/parasitology
20.
J Chem Ecol ; 38(1): 52-62, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22246521

ABSTRACT

A male-produced pheromone that attracts both males and females was identified for the European woodwasp, Sirex noctilio, a serious pest of pine trees. Males displayed excitatory behaviors when placed in groups, and were attracted to the odors from males that were 2-5-d-old, but not to odors from males that were 0-1-d-old. An unsaturated short-chain alcohol, (Z)-3-decen-1-ol, was discovered in samples collected on SuperQ filters over groups of males and identified by using micro-derivatization reactions and gas chromatography coupled with mass spectrometry (GC-MS). The compound was not detected in volatile samples from females. Gas chromatography coupled electroantennographic detection (GC-EAD) of antennae from males exposed to male headspace odors produced strong antennal responses to the main peak of (Z)-3-decen-1-ol, as well as to an unknown minor component that had a similar retention time. Antennae from both males and females responded to synthetic (Z)-3-decen-1-ol. Several different synthetic candidates for the GC-EAD active minor components were selected based on GC-MS and GC-EAD responses to male headspace collections. These synthetic compounds were tested for antennal activity using GC-EAD, and those that produced strong responses were blended with the major component and tested for male attraction in the Y-tube olfactometer at different concentrations and ratios. Males tested in the Y-tube olfactometer were attracted to a synthetic blend of (Z)-3-decen-1-ol and (Z)-4-decen-1-ol at a ratio of 100:1. Whereas the addition of some suspected minor compounds reduced attraction, the addition of a third compound found in male emanations that produced strong male antennal responses, (E,E)-2,4-decadienal (at a ratio of 100:1:1), resulted in attraction of both males (Y-tube and wind tunnel) and females (wind tunnel).


Subject(s)
Pheromones/biosynthesis , Pheromones/pharmacology , Wasps/drug effects , Wasps/metabolism , Animals , Female , Laboratories , Male , Organic Chemicals/analysis , Organic Chemicals/metabolism , Organic Chemicals/pharmacology , Pheromones/analysis , Wasps/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...