Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters











Publication year range
1.
Aging Cell ; : e14243, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39049179

ABSTRACT

Presbycusis is a prevalent condition in older adults characterized by the progressive loss of hearing due to age-related changes in the cochlea, the auditory portion of the inner ear. Many adults also struggle with understanding speech in noise despite having normal auditory thresholds, a condition termed "hidden" hearing loss because it evades standard audiological assessments. Examination of animal models and postmortem human tissue suggests that hidden hearing loss is also associated with age-related changes in the cochlea and may, therefore, precede overt age-related hearing loss. Nevertheless, the pathological mechanisms underlying hidden hearing loss are not understood, which hinders the development of diagnostic biomarkers and effective treatments for age-related hearing loss. To fill these gaps in knowledge, we leveraged a combination of tools, including transcriptomic profiling and morphological and functional assessments, to identify these processes and examine the transition from hidden to overt hearing loss. As a novel approach, we took advantage of a recently characterized model of hidden hearing loss: Kcnt1/2 double knockout mice. Using this model, we find that even before observable morphological pathology, hidden hearing loss is associated with significant alteration in several processes, notably proteostasis, in the cochlear sensorineural structures, and increased susceptibility to overt hearing loss in response to noise exposure and aging. Our findings provide the first insight into the pathophysiology associated with the earliest and, therefore, most treatable stages of hearing loss and provide critical insight directing future investigation of pharmaceutical strategies to slow and possibly prevent overt age-related hearing loss.

2.
Hear Res ; 408: 108293, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34175587

ABSTRACT

Recording the linear vestibular sensory evoked potential (VsEP) relies on moving the head in a prescribed manner to synchronously activate neurons of the gravity receptor organs. One problematic issue in accomplishing this is the potential coactivation of cochlear neurons. Although the major stimulus parameters required to elicit the vestibular response have been characterized, some of the determinants of auditory coactivation have not been clearly addressed. In the present study, we show that the duration of the linear cranial jerk stimulus plays a critical role in avoiding coactivation of auditory responses during VsEP recordings. Acoustic masking procedures are essential when recording the VsEP, particularly when using stimulus durations of less than 1 ms.


Subject(s)
Evoked Potentials, Auditory , Vestibule, Labyrinth , Cochlea , Evoked Potentials , Gravitation
3.
J Assoc Res Otolaryngol ; 22(5): 527-549, 2021 10.
Article in English | MEDLINE | ID: mdl-34009490

ABSTRACT

Management of vestibular dysfunction may include treatment with medications that are thought to act to suppress vestibular function and reduce or eliminate abnormal sensitivity to head motions. The extent to which vestibular medications act centrally or peripherally is still debated. In this study, two commonly prescribed medications, meclizine and diazepam, and a candidate for future clinical use, JNJ7777120, were evaluated for their effects on short latency compound action potentials generated by the peripheral vestibular system and corresponding central neural relays (i.e., vestibular sensory-evoked potentials, VsEPs). The effects of the selected drugs developed slowly over the course of two hours in the mouse. Findings indicate that meclizine (600 mg/kg) and diazepam (> 60 mg/kg) can act on peripheral elements of the vestibular maculae whereas diazepam also acts most effectively on central gravity receptor circuits to exert its suppressive effects. The novel pharmacological agent JNJ7777120 (160 mg/kg) acts in the vestibular periphery to enhance macular responses to transient stimuli (VsEPs) while, hypothetically, suppressing macular responses to sustained or slowly changing stimuli.


Subject(s)
Diazepam/pharmacology , Indoles/pharmacology , Meclizine/pharmacology , Piperazines/pharmacology , Vestibular System/drug effects , Animals , Diazepam/therapeutic use , Indoles/therapeutic use , Meclizine/therapeutic use , Mice , Piperazines/therapeutic use , Vestibule, Labyrinth
4.
J Vestib Res ; 31(6): 441-449, 2021.
Article in English | MEDLINE | ID: mdl-33554930

ABSTRACT

BACKGROUND: Otoconia-related vertigo and balance deficits are common in humans, but the molecular etiology is unknown at present. OBJECTIVE: In order to study mechanisms of otoconia formation and maintenance, we have investigated whether otoconin-90 (Oc90), the predominant otoconial constituent protein, and the NADPH oxidase Nox3, an essential regulatory protein for otoconia formation, are functionally interlinked. METHODS: We performed balance behavioral, electrophysiological, morphological and molecular cellular analyses. RESULTS: Double heterozygous mutant mice for Oc90 and Nox3 show severe imbalance, albeit less profound than double null mutants. In contrast, single heterozygous mutant mice have normal balance. Double heterozygous mice have otoconia defects and double null mice have no otoconia. In addition, some hair bundles in the latter mice go through accelerated degeneration. In vitro calcification analysis in cells stably expressing these proteins singly and doubly shows much more intense calcification in the double transfectants. CONCLUSIONS: Oc90 and Nox3 augment each other's function, which is not only critical for otoconia formation but also for hair bundle maintenance.


Subject(s)
Calcium-Binding Proteins/genetics , Extracellular Matrix Proteins , NADPH Oxidases , Otolithic Membrane , Vertigo/genetics , Animals , Extracellular Matrix Proteins/metabolism , Mice , NADPH Oxidases/genetics , Otolithic Membrane/pathology
5.
Sci Rep ; 9(1): 12430, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31455802

ABSTRACT

The cupula is a gelatinous membrane overlying the crista ampullaris of the semicircular canal, important for sensing rotation of the head and critical for normal balance. Recently the zona pellucida like domain containing 1 protein (ZPLD1, also known as cupulin) was identified in the cupula of fish. Here, we describe two new spontaneous mutations in the mouse Zpld1 gene, which were discovered by the circling behavior of mutant mice, an indicator of balance dysfunction. The Zpld1 mutant mice exhibited normal hearing function as assessed by auditory brainstem response (ABR) measurements, and their otolithic organs appeared normal. In the inner ear, Zpld1 mRNA expression was detected only in the hair cells and supporting cells of the crista ampullaris. Normal vestibular sensory evoked potential (VsEP) responses and abnormal vestibulo-ocular reflex (VOR) responses demonstrated that the vestibular dysfunction of the Zpld1 mutant mice is caused by loss of sensory input for rotary head movements (detected by cristae ampullaris) and not by loss of input for linear head translations (detected by maculae of the utricle and saccule). Taken together, these results are consistent with ZPLD1 being an important functional component of the cupula, but not tectorial or otoconial membranes.


Subject(s)
Behavior, Animal , Evoked Potentials , Gravity Sensing , Membrane Proteins/metabolism , Mutation , Semicircular Canals , Animals , Membrane Proteins/genetics , Mice , Mice, Mutant Strains , Semicircular Canals/metabolism , Semicircular Canals/physiopathology
6.
Neurotherapeutics ; 16(2): 348-359, 2019 04.
Article in English | MEDLINE | ID: mdl-30972560

ABSTRACT

Antisense oligonucleotides (ASOs) have shown potential as therapeutic molecules for the treatment of inner ear dysfunction. The peripheral sensory organs responsible for both hearing and equilibrium are housed within the inner ear. Hearing loss and vestibular balance problems affect a large portion of the population and limited treatment options exist. Targeting ASOs to the inner ear as a therapeutic strategy has unique pharmacokinetic and drug delivery opportunities and challenges. Here, we review ASO technology, delivery, disease targets, and other key considerations for development of this therapeutic approach.


Subject(s)
Hearing Loss, Sensorineural/drug therapy , Oligonucleotides, Antisense/therapeutic use , Usher Syndromes/drug therapy , Animals , Ear, Inner , Humans , Molecular Targeted Therapy
7.
Sci Rep ; 9(1): 2573, 2019 02 22.
Article in English | MEDLINE | ID: mdl-30796290

ABSTRACT

Potassium (K+) channels shape the response properties of neurons. Although enormous progress has been made to characterize K+ channels in the primary auditory neurons, the molecular identities of many of these channels and their contributions to hearing in vivo remain unknown. Using a combination of RNA sequencing and single molecule fluorescent in situ hybridization, we localized expression of transcripts encoding the sodium-activated potassium channels KNa1.1 (SLO2.2/Slack) and KNa1.2 (SLO2.1/Slick) to the primary auditory neurons (spiral ganglion neurons, SGNs). To examine the contribution of these channels to function of the SGNs in vivo, we measured auditory brainstem responses in KNa1.1/1.2 double knockout (DKO) mice. Although auditory brainstem response (wave I) thresholds were not altered, the amplitudes of suprathreshold responses were reduced in DKO mice. This reduction in amplitude occurred despite normal numbers and molecular architecture of the SGNs and their synapses with the inner hair cells. Patch clamp electrophysiology of SGNs isolated from DKO mice displayed altered membrane properties, including reduced action potential thresholds and amplitudes. These findings show that KNa1 channel activity is essential for normal cochlear function and suggest that early forms of hearing loss may result from physiological changes in the activity of the primary auditory neurons.


Subject(s)
Auditory Cortex/metabolism , Evoked Potentials, Auditory, Brain Stem , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Potassium Channels, Sodium-Activated/metabolism , Animals , Auditory Cortex/cytology , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Neurons/cytology , Potassium Channels, Sodium-Activated/genetics
8.
J Am Assoc Lab Anim Sci ; 57(3): 268-277, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29784077

ABSTRACT

The injectable anesthetic mixture ketamine-xylazine is commonly used for electrophysiologic experiments in laboratory animals, especially rodents. General anesthesia can induce significant changes in systemic physiology, including those that compromise neural function, thus introducing research confounds. The extent of such concerns varies by agent. Here in mice, we compared the effects of ketamine-xylazine and urethane-xylazine anesthesia on systemic physiologic parameters and the vestibular sensory evoked potential (VsEP), a tool used commonly to assess peripheral vestibular function. Urethane-xylazine anesthesia provided longer anesthesia, prolonged survival times, and less compromised respiratory and cardiovascular function, compared with ketamine-xylazine. In the absence of countermeasures, mice anesthetized with either ketamine-xylazine or urethane-xylazine showed evidence of hypoxemia and fluctuations in brain temperature, heart rate, respiration rate, and VsEP response latency. The levels of hypoxemia had no effect on VsEP response parameters over the period of study (2 to 5 h). Hypoxemia was effectively countered with O2 supplementation, which stabilized respiratory rates and improved mean survival times by 160% in mice anesthetized with ketamine-xylazine. Monitoring and controlling brain temperature reduced variation in VsEP latency. VsEP thresholds, latencies, and amplitudes did not differ between mice under ketamine-xylazine compared with urethane-xylazine when the brain temperature was held at the same set point. These findings demonstrate that urethane-xylazine provides improved systemic physiologic conditions during anesthesia in mice and may be substituted for ketamine-xylazine in studies using the VsEP to evaluate peripheral vestibular function. Such advantages may prove useful to research in other neuroscience areas and might reduce the number of animals used to achieve adequate sample sizes.


Subject(s)
Evoked Potentials, Somatosensory/drug effects , Heart Rate/drug effects , Ketamine/pharmacology , Respiratory Rate/drug effects , Urethane/pharmacology , Anesthesia/veterinary , Anesthetics, Intravenous/pharmacology , Animals , Body Temperature , Brain/drug effects , Brain/physiology , Laboratory Animal Science , Male , Mice , Xylazine/pharmacology
9.
Hear Res ; 361: 152-156, 2018 04.
Article in English | MEDLINE | ID: mdl-29459166

ABSTRACT

Specific pharmacological blockade of KCNQ (Kv7) channels with XE991 rapidly (within 20 min) and profoundly alters inner ear gravity receptor responses to head motion (Lee et al., 2017). We hypothesized that these effects were attributable to the suppression of K+ secretion following blockade of KCNQ1-KCNE1 channels in vestibular dark cells and marginal cells. To test this hypothesis, K+ secretion was independently inhibited by blocking the Na+-K+-2Cl- cotransporter (NKCC1, Slc12a2) rather than KCNQ1-KCNE1 channels. Acute blockade of NKCC1 with ethacrynic acid (40 mg/kg) eliminated auditory responses (ABRs) within approximately 70 min of injection, but had no effect on vestibular gravity receptor function (VsEPs) over a period of 2 h in the same animals. These findings show that, vestibular gravity receptors are highly resistant to acute disruption of endolymph secretion unlike the auditory system. Based on this we argue that acute suppression of K+ secretion alone does not likely account for the rapid profound effects of XE991 on gravity receptors. Instead the effects of XE991 likely require additional action at KCNQ channels located within the sensory epithelium itself.


Subject(s)
Ethacrynic Acid/pharmacology , Gravitation , Head Movements , KCNQ Potassium Channels/metabolism , Potassium/metabolism , Sodium Potassium Chloride Symporter Inhibitors/pharmacology , Solute Carrier Family 12, Member 2/drug effects , Vestibule, Labyrinth/drug effects , Animals , Anthracenes/pharmacology , Endolymph/metabolism , Evoked Potentials, Auditory, Brain Stem/drug effects , KCNQ Potassium Channels/antagonists & inhibitors , Mice, Inbred C57BL , Potassium Channel Blockers/pharmacology , Secretory Pathway , Solute Carrier Family 12, Member 2/metabolism , Time Factors , Vestibule, Labyrinth/cytology , Vestibule, Labyrinth/metabolism
10.
J Neurophysiol ; 118(6): 2991-3006, 2017 12 01.
Article in English | MEDLINE | ID: mdl-28855291

ABSTRACT

The precise role and mechanisms underlying efferent modulation of peripheral vestibular afferent function are not well understood in mammals. Clarifying the details of efferent action may lead to new strategies for clinical management of debilitating disturbances in vestibular and balance function. Recent evidence in turtle indicates that efferent modulation of M-currents is likely one mechanism for modifying afferent discharge. M-currents depend in part on KCNQ potassium conductances (Kv7), which can be adjusted through efferent activation of M1, M3, and/or M5 muscarinic acetylcholine receptors (mAChRs). How KCNQ channels and altered M-currents affect vestibular afferent function in vivo is unclear, and whether such a mechanism operates in mammals is unknown. In this study we used the KCNQ antagonist XE991 and the KCNQ activator retigabine in anesthetized mice to evaluate the effects of M-current modulation on peripheral vestibular responses to transient head motion. At low doses of XE991, responses were modestly enhanced, becoming larger in amplitude and shorter in latency. Higher doses of XE991 produced transient response enhancement, followed by steady-state suppression where latencies and thresholds increased and amplitudes decreased. Retigabine produced opposite effects. Auditory function was also impacted, based on results of companion auditory brain stem response testing. We propose that closure of KCNQ channels transforms vestibular afferent behavior by suppressing responses to transient high-frequency stimuli while simultaneously enhancing responses to sustained low-frequency stimulation. Our results clearly demonstrate that KCNQ channels are critical for normal mammalian vestibular function and suggest that efferent action may utilize these mechanisms to modulate the dynamic characteristics and gain of vestibular afferent responses.NEW & NOTEWORTHY The role of calyceal KCNQ channels and associated M-current in normal mammalian vestibular function is unknown. Our results show that calyceal KCNQ channels are critical for normal vestibular function in the intact mammal. The findings provide evidence that efferent modulation of M-currents may act normally to differentially adjust the sensitivity of vestibular neurons to transient and tonic stimulation and that such mechanisms may be targeted to achieve effective clinical management of vestibular disorders.


Subject(s)
Head Movements , Motor Neurons/physiology , Vestibule, Labyrinth/physiology , Animals , Anthracenes/pharmacology , Carbamates/pharmacology , Evoked Potentials , Female , KCNQ Potassium Channels/agonists , KCNQ Potassium Channels/antagonists & inhibitors , KCNQ Potassium Channels/metabolism , Membrane Transport Modulators/pharmacology , Mice , Mice, Inbred C57BL , Motor Neurons/metabolism , Phenylenediamines/pharmacology
11.
J Audiol Otol ; 21(3): 125-132, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28942632

ABSTRACT

The use of pharmacological agents is often the preferred approach to the management of vestibular dysfunction. In the vestibular sensory pathways, the sensory neuroepithelia are thought to be influenced by a diverse number of neuroactive substances that may act to enhance or inhibit the effect of the primary neurotransmitters [i.e., glutamate (Glu) and acetylcholine (ACh)] or alter their patterns of release. This review summarizes various efforts to identify drug targets including neurotransmitter and neuromodulator receptors in the vestibular sensory pathways. Identifying these receptor targets provides a strategic basis to use specific pharmacological tools to modify receptor function in the treatment and management of debilitating balance disorders. A review of the literature reveals that most investigations of the neuropharmacology of peripheral vestibular function have been performed using in vitro or ex vivo animal preparations rather than studying drug action on the normal intact vestibular system in situ. Such noninvasive approaches could aid the development of more accurate and effective intervention strategies for the treatment of dizziness and vertigo. The current review explores the major neuropharmacological targets for drug action in the vestibular system.

12.
Hum Mol Genet ; 26(18): 3482-3494, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28633508

ABSTRACT

Usher syndrome type 1C (USH1C/harmonin) is associated with profound retinal, auditory and vestibular dysfunction. We have previously reported on an antisense oligonucleotide (ASO-29) that dramatically improves auditory function and balance behavior in mice homozygous for the harmonin mutation Ush1c c.216G > A following a single systemic administration. The findings were suggestive of improved vestibular function; however, no direct vestibular assessment was made. Here, we measured vestibular sensory evoked potentials (VsEPs) to directly assess vestibular function in Usher mice. We report that VsEPs are absent or abnormal in Usher mice, indicating profound loss of vestibular function. Strikingly, Usher mice receiving ASO-29 treatment have normal or elevated vestibular response thresholds when treated during a critical period between postnatal day 1 and 5, respectively. In contrast, treatment of mice with ASO-29 treatment at P15 was minimally effective at rescuing vestibular function. Interestingly, ASO-29 treatment at P1, P5 or P15 resulted in sufficient vestibular recovery to support normal balance behaviors, suggesting a therapeutic benefit to balance with ASO-29 treatment at P15 despite the profound vestibular functional deficits that persist with treatment at this later time. These findings provide the first direct evidence of an effective treatment of peripheral vestibular function in a mouse model of USH1C and reveal the potential for using antisense technology to treat vestibular dysfunction.


Subject(s)
Carrier Proteins/genetics , Carrier Proteins/metabolism , Usher Syndromes/therapy , Animals , Cell Cycle Proteins , Cytoskeletal Proteins , Disease Models, Animal , Evoked Potentials, Auditory , Hearing/genetics , Mice , Mutation , Oligonucleotides, Antisense/therapeutic use , Retina/metabolism , Retinal Degeneration/genetics , Usher Syndromes/genetics , Usher Syndromes/metabolism , Vestibular Evoked Myogenic Potentials/genetics , Vestibule, Labyrinth/metabolism , Vestibule, Labyrinth/physiology
13.
J Comp Neurol ; 525(5): 1216-1233, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-27718229

ABSTRACT

Little is known about the function of the cholinergic efferents innervating peripheral vestibular hair cells. We measured vestibular sensory evoked potentials (VsEPs) in α9 knockout (KO) mice, α10 KO mice, α7 KO mice, α9/10 and α7/9 double KO mice, and wild-type (WT) controls. We also studied the morphology and ultrastructure of efferent terminals on vestibular hair cells in α9, α10, and α9/10 KOs. Both type I and type ll vestibular hair cells express the α9 and α10 subunits. The efferent boutons on vestibular cells in α9, α10, and α9/10 KOs appeared normal, but a quantitative analysis was not performed. Mean VsEP thresholds were significantly elevated in α9 and α9/10 KO animals. Some α9 and α9/10 KO animals, however, had normal or near-normal thresholds, whereas others were greatly affected. Despite individual variability in threshold responses, latencies were consistently shortened. The double α7/9 KO resulted in decreased variance by normalizing waveforms and latencies. The phenotypes of the α7 and α10 single KOs were identical. Both α7 and α10 KO mice evidenced normal thresholds, decreased activation latencies, and larger amplitudes compared with WT mice. The data suggest a complex interaction of nicotinic acetylcholine receptors (nAChRs) in regulating vestibular afferent gain and activation timing. Although the α9/10 heteromeric nAChR is an important component of vestibular efferent activity, other peripheral or central nAChRs involving the α7 subunit or α10 subunit and α9 homomeric receptors are also important. J. Comp. Neurol. 525:1216-1233, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Evoked Potentials, Somatosensory/physiology , Hair Cells, Vestibular/metabolism , Receptors, Nicotinic/metabolism , Animals , Fluorescent Antibody Technique , Mice , Mice, Knockout , Microscopy, Confocal
14.
Neurobiol Aging ; 43: 13-22, 2016 07.
Article in English | MEDLINE | ID: mdl-27255811

ABSTRACT

The C57BL/6J (B6) mouse strain carries a cadherin 23 mutation (Cdh23(753A), also known as Ahl), which affects inner ear structures and results in age-related hearing loss. The B6.CAST strain harbors the wild type Cdh23 gene, and hence, the influence of Ahl is absent. The purpose of the present study was to characterize the effect of age and gender on gravity receptor function in B6 and B6.CAST strains and to compare functional aging between auditory and vestibular modalities. Auditory sensitivity declined at significantly faster rates than gravity receptor sensitivity for both strains. Indeed, vestibular functional aging was minimal for both strains. The comparatively smaller loss of macular versus cochlear sensitivity in both the B6 and B6.CAST strains suggests that the contribution of Ahl to the aging of the vestibular system is minimal, and thus very different than its influence on aging of the auditory system. Alternatively, there exist unidentified genes or gene modifiers that serve to slow the degeneration of gravity receptor structures and maintain gravity receptor sensitivity into advanced age.


Subject(s)
Aging/genetics , Aging/physiology , Cadherins/physiology , Gravity Sensing/genetics , Gravity Sensing/physiology , Hearing/genetics , Hearing/physiology , Vestibule, Labyrinth/physiology , Aging/pathology , Animals , Cochlea/pathology , Cochlea/physiology , Female , Male , Mice, Inbred C57BL , Mutation , Sex Characteristics , Vestibule, Labyrinth/pathology
15.
Hum Mol Genet ; 24(24): 7017-30, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26420843

ABSTRACT

The DFNB31 gene plays an indispensable role in the cochlea and retina. Mutations in this gene disrupt its various isoforms and lead to non-syndromic deafness, blindness and deaf-blindness. However, the known expression of Dfnb31, the mouse ortholog of DFNB31, in vestibular organs and the potential vestibular-deficient phenotype observed in one Dfnb31 mutant mouse (Dfnb31(wi/wi)) suggest that DFNB31 may also be important for vestibular function. In this study, we find that full-length (FL-) and C-terminal (C-) whirlin isoforms are expressed in the vestibular organs, where their stereociliary localizations are similar to those of developing cochlear inner hair cells. No whirlin is detected in Dfnb31(wi/wi) vestibular organs, while only C-whirlin is expressed in Dfnb31(neo/neo) vestibular organs. Both FL- and C-whirlin isoforms are required for normal vestibular stereociliary growth, although they may play slightly different roles in the central and peripheral zones of the crista ampullaris. Vestibular sensory-evoked potentials demonstrate severe to profound vestibular deficits in Dfnb31(neo/neo) and Dfnb31(wi/wi) mice. Swimming and rotarod tests demonstrate that the two Dfnb31 mutants have balance problems, with Dfnb31(wi/wi) mice being more affected than Dfnb31(neo/neo) mice. Because Dfnb31(wi/wi) and Dfnb31(neo/neo) mice faithfully recapitulate hearing and vision symptoms in patients, our findings of vestibular dysfunction in these Dfnb31 mutants raise the question of whether DFNB31-deficient patients may acquire vestibular as well as hearing and vision loss.


Subject(s)
Ear, Inner/physiopathology , Hearing Loss, Sensorineural/genetics , Membrane Proteins/genetics , Animals , Disease Models, Animal , Ear, Inner/pathology , Hair Cells, Auditory/pathology , Hearing Loss, Sensorineural/physiopathology , Humans , Membrane Proteins/deficiency , Mice , Mice, Mutant Strains , Mutation , Postural Balance , Protein Isoforms/genetics
16.
Hear Res ; 321: 52-64, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25637745

ABSTRACT

Shank proteins (1-3) are considered the master organizers of glutamatergic postsynaptic densities in the central nervous system, and the genetic deletion of either Shank1, 2, or 3 results in altered composition, form, and strength of glutamatergic postsynapses. To investigate the contribution of Shank proteins to glutamatergic afferent synapses of the inner ear and especially cochlea, we used immunofluorescence and quantitative real time PCR to determine the expression of Shank1, 2, and 3 in the cochlea. Because we found evidence for expression of Shank1 but not 2 and 3, we investigated the morphology, composition, and function of afferent postsynaptic densities from defined tonotopic regions in the cochlea of Shank1(-/-) mice. Using immunofluorescence, we identified subtle changes in the morphology and composition (but not number and localization) of cochlear afferent postsynaptic densities at the lower frequency region (8 kHz) in Shank1(-/-) mice compared to Shank1(+/+) littermates. However, we detected no differences in auditory brainstem responses at matching or higher frequencies. We also identified Shank1 in the vestibular afferent postsynaptic densities, but detected no differences in vestibular sensory evoked potentials in Shank1(-/-) mice compared to Shank1(+/+) littermates. This work suggests that Shank proteins play a different role in the development and maintenance of glutamatergic afferent synapses in the inner ear compared to the central nervous system.


Subject(s)
Auditory Pathways/metabolism , Ear, Inner/metabolism , Glutamic Acid/metabolism , Hair Cells, Auditory, Inner/metabolism , Nerve Tissue Proteins/deficiency , Synaptic Transmission , Animals , Cochlea/innervation , Evoked Potentials, Auditory, Brain Stem , Genotype , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Microfilament Proteins , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Phenotype , Time Factors , Vestibular Evoked Myogenic Potentials , Vestibule, Labyrinth/innervation
17.
J Assoc Res Otolaryngol ; 16(2): 189-204, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25648882

ABSTRACT

Vestibular macular sensors are activated by a shearing motion between the otoconial membrane and underlying receptor epithelium. Shearing motion and sensory activation in response to an externally induced head motion do not occur instantaneously. The mechanically reactive elastic and inertial properties of the intervening tissue introduce temporal constraints on the transfer of the stimulus to sensors. Treating the otoconial sensory apparatus as an overdamped second-order mechanical system, we measured the governing long time constant (Τ(L)) for stimulus transfer from the head surface to epithelium. This provided the basis to estimate the corresponding upper cutoff for the frequency response curve for mouse otoconial organs. A velocity step excitation was used as the forcing function. Hypothetically, the onset of the mechanical response to a step excitation follows an exponential rise having the form Vel(shear) = U(1-e(-t/TL)), where U is the applied shearing velocity step amplitude. The response time of the otoconial apparatus was estimated based on the activation threshold of macular neural responses to step stimuli having durations between 0.1 and 2.0 ms. Twenty adult C57BL/6 J mice were evaluated. Animals were anesthetized. The head was secured to a shaker platform using a non-invasive head clip or implanted skull screws. The shaker was driven to produce a theoretical forcing step velocity excitation at the otoconial organ. Vestibular sensory evoked potentials (VsEPs) were recorded to measure the threshold for macular neural activation. The duration of the applied step motion was reduced systematically from 2 to 0.1 ms and response threshold determined for each duration (nine durations). Hypothetically, the threshold of activation will increase according to the decrease in velocity transfer occurring at shorter step durations. The relationship between neural threshold and stimulus step duration was characterized. Activation threshold increased exponentially as velocity step duration decreased below 1.0 ms. The time constants associated with the exponential curve were Τ(L) = 0.50 ms for the head clip coupling and T(L) = 0.79 ms for skull screw preparation. These corresponded to upper -3 dB frequency cutoff points of approximately 318 and 201 Hz, respectively. T(L) ranged from 224 to 379 across individual animals using the head clip coupling. The findings were consistent with a second-order mass-spring mechanical system. Threshold data were also fitted to underdamped models post hoc. The underdamped fits suggested natural resonance frequencies on the order of 278 to 448 Hz as well as the idea that macular systems in mammals are less damped than generally acknowledged. Although estimated indirectly, it is argued that these time constants reflect largely if not entirely the mechanics of transfer to the sensory apparatus. The estimated governing time constant of 0.50 ms for composite data predicts high frequency cutoffs of at least 318 Hz for the intact otoconial apparatus of the mouse.


Subject(s)
Otolithic Membrane/physiology , Acoustic Stimulation , Animals , Female , Head/physiology , Mice , Mice, Inbred C57BL
18.
Mamm Genome ; 26(3-4): 154-72, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25645995

ABSTRACT

A/J mice develop progressive hearing loss that begins before 1 month of age and is attributed to cochlear hair cell degeneration. Screening tests indicated that this strain also develops early onset vestibular dysfunction and has otoconial deficits. The purpose of this study was to characterize the vestibular dysfunction and macular structural pathology over the lifespan of A/J mice. Vestibular function was measured using linear vestibular evoked potentials (VsEPs). Macular structural pathology was evaluated using light microscopy, scanning electron microscopy, transmission electron microscopy, confocal microscopy and Western blotting. Individually, vestibular functional deficits in mice ranged from mild to profound. On average, A/J mice had significantly reduced vestibular sensitivity (elevated VsEP response thresholds and smaller amplitudes), whereas VsEP onset latency was prolonged compared to age-matched controls (C57BL/6). A limited age-related vestibular functional loss was also present. Structural analysis identified marked age-independent otoconial abnormalities in concert with some stereociliary bundle defects. Macular epithelia were incompletely covered by otoconial membranes with significantly reduced opacity and often contained abnormally large or giant otoconia as well as normal-appearing otoconia. Elevated expression of key otoconins (i.e., otoconin 90, otolin and keratin sulfate proteoglycan) ruled out the possibility of reduced levels contributing to otoconial dysgenesis. The phenotype of A/J was partially replicated in a consomic mouse strain (C57BL/6J-Chr 17(A/J)/NaJ), thus indicating that Chr 17(A/J) contained a trait locus for a new gene variant responsible to some extent for the A/J vestibular phenotype. Quantitative trait locus analysis identified additional epistatic influences associated with chromosomes 1, 4, 9 and X. Results indicate that the A/J phenotype represents a complex trait, and the A/J mouse strain presents a new model for the study of mechanisms underlying otoconial formation and maintenance.


Subject(s)
Genetic Association Studies , Macula Lutea/pathology , Mice, Inbred Strains , Quantitative Trait Loci , Quantitative Trait, Heritable , Vestibule, Labyrinth/physiopathology , Animals , Biological Evolution , Chromosomes, Mammalian , Crosses, Genetic , Evoked Potentials, Auditory , Female , Macula Lutea/ultrastructure , Male , Mice , Mice, Inbred C57BL , Vestibule, Labyrinth/pathology , Vestibule, Labyrinth/ultrastructure
19.
J Am Acad Audiol ; 26(1): 59-67, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25597461

ABSTRACT

BACKGROUND: The vestibular sensory-evoked potential (VsEP) is an electrical potential that provides a direct test of vestibular function in animals. VsEP recordings are carried out using subcutaneous stainless steel electrodes placed over the nuchal crest (noninverting), behind either the left or right pinna (inverting), and at the hip (ground). A noninvasive head clip is used to secure the head to a mechanical shaker for delivery of a linear vestibular stimulus measured in units of jerk (g/msec). Frequent repositioning of the noninvasive head clip and skin electrodes may be necessary during recording for particular protocols; however, the test-retest reliability of the VsEP response (latency, amplitude, and threshold) has not been determined. PURPOSE: The purpose of this study was to determine the possible effects of frequent repositioning of the noninvasive head clip and skin electrodes on VsEP response parameters (latencies, amplitudes, and thresholds). We hypothesize that the VsEP response will remain stable and reliable with such repeated measurements in a given animal across time. RESEARCH DESIGN: Linear VsEP responses were recorded from ten C57 mice (ages: 2.45 mo ±0.20; weights: 17.94 g ±1.51). Two standard threshold protocols and four repeated VsEP measurements at +6 dB re: 1.0 g/msec were performed, with four selected time points of head clip repositioning. In addition, three novice investigators performed measurements of noninverting electrode placement and head clip positioning. RESULTS: VsEP response latency, amplitude, and threshold means did not significantly change with frequent repositioning of the head clip and skin electrodes; however, increased variability was observed. CONCLUSIONS: The findings demonstrate that repositioning does not introduce significant changes in mean parameter values of the recorded VsEP response waveform; however, mean absolute difference calculations demonstrated that frequent repositioning increased response variance. For VsEP protocols requiring frequent repositioning, standardized electrode montage, optimal placement of the noninverting electrode at the nuchal crest, and increased sample size are suggested.


Subject(s)
Evoked Potentials, Auditory/physiology , Reaction Time/physiology , Vestibular Function Tests/methods , Vestibule, Labyrinth/physiology , Animals , Mice , Mice, Inbred C57BL , Reproducibility of Results
20.
J Am Acad Audiol ; 25(3): 289-301, 2014 Mar.
Article in English | MEDLINE | ID: mdl-25032973

ABSTRACT

BACKGROUND: A considerable amount of research has been published about genetic hearing impairment. Fifty to sixty percent of hearing loss is thought to have a genetic cause. Genes may also play a significant role in acquired hearing loss due to aging, noise exposure, or ototoxic medications. Between 1995 and 2012, over 100 causative genes have been identified for syndromic and nonsyndromic forms of hereditary hearing loss. Mouse models have been extremely valuable in facilitating the discovery of hearing loss genes and in understanding inner ear pathology due to genetic mutations or elucidating fundamental mechanisms of inner ear development. PURPOSE: Whereas much is being learned about hereditary hearing loss and the genetics of cochlear disorders, relatively little is known about the role genes may play in peripheral vestibular impairment. Here we review the literature with regard to genetics of vestibular dysfunction and discuss what we have learned from studies using mutant mouse models and direct measures of peripheral vestibular neural function. RESULTS: Several genes are considered that when mutated lead to varying degrees of inner ear vestibular dysfunction due to deficits in otoconia, stereocilia, hair cells, or neurons. Behavior often does not reveal the inner ear deficit. Many of the examples presented are also known to cause human disorders. CONCLUSIONS: Knowledge regarding the roles of particular genes in the operation of the vestibular sensory apparatus is growing, and it is clear that gene products co-expressed in the cochlea and vestibule may play different roles in the respective end organs. The discovery of new genes mediating critical inner ear vestibular function carries the promise of new strategies in diagnosing, treating, and managing patients as well as predicting the course and level of morbidity in human vestibular disease.


Subject(s)
Mutation/genetics , Vestibular Diseases/genetics , Vestibulocochlear Nerve Diseases/genetics , Animals , Disease Models, Animal , Hair Cells, Auditory , Homeostasis/genetics , Humans , Mice , Mice, Mutant Strains , Otolithic Membrane , Stereocilia/genetics , Synapses/genetics , Vestibular Diseases/physiopathology , Vestibular Nerve/physiopathology , Vestibulocochlear Nerve Diseases/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL