Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Sci Rep ; 14(1): 8165, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38589653

ABSTRACT

Accurately calling indels with next-generation sequencing (NGS) data is critical for clinical application. The precisionFDA team collaborated with the U.S. Food and Drug Administration's (FDA's) National Center for Toxicological Research (NCTR) and successfully completed the NCTR Indel Calling from Oncopanel Sequencing Data Challenge, to evaluate the performance of indel calling pipelines. Top performers were selected based on precision, recall, and F1-score. The performance of many other pipelines was close to the top performers, which produced a top cluster of performers. The performance was significantly higher in high confidence regions and coding regions, and significantly lower in low complexity regions. Oncopanel capture and other issues may have occurred that affected the recall rate. Indels with higher variant allele frequency (VAF) may generally be called with higher confidence. Many of the indel calling pipelines had good performance. Some of them performed generally well across all three oncopanels, while others were better for a specific oncopanel. The performance of indel calling can further be improved by restricting the calls within high confidence intervals (HCIs) and coding regions, and by excluding low complexity regions (LCR) regions. Certain VAF cut-offs could be applied according to the applications.


Subject(s)
High-Throughput Nucleotide Sequencing , INDEL Mutation , Polymorphism, Single Nucleotide
2.
NAR Cancer ; 4(3): zcac026, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36177381

ABSTRACT

Uterine serous carcinoma (USC), an aggressive variant of endometrial cancer representing approximately 10% of endometrial cancer diagnoses, accounts for ∼39% of endometrial cancer-related deaths. We examined the role of genomic alterations in advanced-stage USC associated with outcome using paired primary-metastatic tumors (n = 29) treated with adjuvant platinum and taxane chemotherapy. Comparative genomic analysis of paired primary-metastatic patient tumors included whole exome sequencing and targeted gene expression. Both PLK3 amplification and the tumor immune microenvironment (TIME) in metastatic tumors were linked to time-to-recurrence (TTR) risk without any such association observed with primary tumors. TP53 loss was significantly more frequent in metastatic tumors of platinum-resistant versus platinum-sensitive patients and was also associated with increased recurrence and mortality risk. Increased levels of chr1 breakpoints in USC metastatic versus primary tumors co-occur with PLK3 amplification. PLK3 and the TIME are potential targets for improving outcomes in USC adjuvant therapy.

3.
Genome Biol ; 23(1): 141, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35768876

ABSTRACT

BACKGROUND: Clinical laboratories routinely use formalin-fixed paraffin-embedded (FFPE) tissue or cell block cytology samples in oncology panel sequencing to identify mutations that can predict patient response to targeted therapy. To understand the technical error due to FFPE processing, a robustly characterized diploid cell line was used to create FFPE samples with four different pre-tissue processing formalin fixation times. A total of 96 FFPE sections were then distributed to different laboratories for targeted sequencing analysis by four oncopanels, and variants resulting from technical error were identified. RESULTS: Tissue sections that fail more frequently show low cellularity, lower than recommended library preparation DNA input, or target sequencing depth. Importantly, sections from block surfaces are more likely to show FFPE-specific errors, akin to "edge effects" seen in histology, while the inner samples display no quality degradation related to fixation time. CONCLUSIONS: To assure reliable results, we recommend avoiding the block surface portion and restricting mutation detection to genomic regions of high confidence.


Subject(s)
Formaldehyde , High-Throughput Nucleotide Sequencing , Humans , Paraffin Embedding , Sequence Analysis, DNA , Tissue Fixation
4.
Sci Data ; 9(1): 288, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35680918

ABSTRACT

The lack of suitable reference genomic material to enable a transparent cross-lab study of oncopanels inspired the SEQC2 Oncopanel Sequencing Working Group to develop four reference samples, sequenced with eight oncopanels at independent test laboratories with ultra-deep sequencing depth. This rich, publicly available dataset enabled performance assessment of the clinical applicability of oncopanels. In addition, this dataset present sample opportunities for developing specific and robust bioinformatics pipelines and fine-tuning parameters for more accurate variant calling, investigating ideal sequencing depth for variant calling of a given minimum VAF and variant type, and also recommending best use cases for Unique Molecular Identifier (UMI) technology.


Subject(s)
DNA, Neoplasm , High-Throughput Nucleotide Sequencing , Neoplasms , Benchmarking , Gene Frequency , Humans , Neoplasms/genetics , Polymorphism, Single Nucleotide
5.
Sci Data ; 9(1): 170, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35418127

ABSTRACT

Recently we reported the accuracy and reproducibility of circulating tumor DNA (ctDNA) assays using a unique set of reference materials, associated analytical framework, and suggested best practices. With the rapid adoption of ctDNA sequencing in precision oncology, it is critical to understand the analytical validity and technical limitations of this cutting-edge and medical-practice-changing technology. The SEQC2 Oncopanel Sequencing Working Group has developed a multi-site, cross-platform study design for evaluating the analytical performance of five industry-leading ctDNA assays. The study used tailor-made reference samples at various levels of input material to assess ctDNA sequencing across 12 participating clinical and research facilities. The generated dataset encompasses multiple key variables, including a broad range of mutation frequencies, sequencing coverage depth, DNA input quantity, etc. It is the most comprehensive public-facing dataset of its kind and provides valuable insights into ultra-deep ctDNA sequencing technology. Eventually the clinical utility of ctDNA assays is required and our proficiency study and corresponding dataset are needed steps towards this goal.


Subject(s)
Circulating Tumor DNA , Neoplasms , Biomarkers, Tumor/genetics , Circulating Tumor DNA/genetics , High-Throughput Nucleotide Sequencing , Humans , Liquid Biopsy , Mutation , Neoplasms/diagnosis , Neoplasms/genetics , Precision Medicine , Reproducibility of Results
6.
iScience ; 24(8): 102892, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34308277

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging new type of coronavirus that is responsible for the COVID-19 pandemic and the unprecedented global health emergency. Whole-genome sequencing (WGS) of SARS-CoV-2 plays a critical role in understanding the disease. Performance variation exists across SARS-CoV-2 viral WGS technologies, but there is currently no benchmarking study comparing different WGS sequencing protocols. We compared seven different SARS-CoV-2 WGS library protocols using RNA from patient nasopharyngeal swab samples under two storage conditions with low and high viral inputs. We found large differences in mappability and genome coverage, and variations in sensitivity, reproducibility, and precision of single-nucleotide variant calling across different protocols. For certain amplicon-based protocols, an appropriate primer trimming step is critical for accurate single-nucleotide variant calling. We ranked the performance of protocols based on six different metrics. Our findings offer guidance in choosing appropriate WGS protocols to characterize SARS-CoV-2 and its evolution.

7.
Genome Biol ; 22(1): 111, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33863366

ABSTRACT

BACKGROUND: Oncopanel genomic testing, which identifies important somatic variants, is increasingly common in medical practice and especially in clinical trials. Currently, there is a paucity of reliable genomic reference samples having a suitably large number of pre-identified variants for properly assessing oncopanel assay analytical quality and performance. The FDA-led Sequencing and Quality Control Phase 2 (SEQC2) consortium analyze ten diverse cancer cell lines individually and their pool, termed Sample A, to develop a reference sample with suitably large numbers of coding positions with known (variant) positives and negatives for properly evaluating oncopanel analytical performance. RESULTS: In reference Sample A, we identify more than 40,000 variants down to 1% allele frequency with more than 25,000 variants having less than 20% allele frequency with 1653 variants in COSMIC-related genes. This is 5-100× more than existing commercially available samples. We also identify an unprecedented number of negative positions in coding regions, allowing statistical rigor in assessing limit-of-detection, sensitivity, and precision. Over 300 loci are randomly selected and independently verified via droplet digital PCR with 100% concordance. Agilent normal reference Sample B can be admixed with Sample A to create new samples with a similar number of known variants at much lower allele frequency than what exists in Sample A natively, including known variants having allele frequency of 0.02%, a range suitable for assessing liquid biopsy panels. CONCLUSION: These new reference samples and their admixtures provide superior capability for performing oncopanel quality control, analytical accuracy, and validation for small to large oncopanels and liquid biopsy assays.


Subject(s)
Alleles , Biomarkers, Tumor , Gene Frequency , Genetic Testing/methods , Genetic Variation , Genomics/methods , Neoplasms/genetics , Cell Line, Tumor , DNA Copy Number Variations , Genetic Heterogeneity , Genetic Testing/standards , Genomics/standards , Humans , Neoplasms/diagnosis , Workflow
8.
Nat Biotechnol ; 39(9): 1115-1128, 2021 09.
Article in English | MEDLINE | ID: mdl-33846644

ABSTRACT

Circulating tumor DNA (ctDNA) sequencing is being rapidly adopted in precision oncology, but the accuracy, sensitivity and reproducibility of ctDNA assays is poorly understood. Here we report the findings of a multi-site, cross-platform evaluation of the analytical performance of five industry-leading ctDNA assays. We evaluated each stage of the ctDNA sequencing workflow with simulations, synthetic DNA spike-in experiments and proficiency testing on standardized, cell-line-derived reference samples. Above 0.5% variant allele frequency, ctDNA mutations were detected with high sensitivity, precision and reproducibility by all five assays, whereas, below this limit, detection became unreliable and varied widely between assays, especially when input material was limited. Missed mutations (false negatives) were more common than erroneous candidates (false positives), indicating that the reliable sampling of rare ctDNA fragments is the key challenge for ctDNA assays. This comprehensive evaluation of the analytical performance of ctDNA assays serves to inform best practice guidelines and provides a resource for precision oncology.


Subject(s)
Circulating Tumor DNA/genetics , Medical Oncology , Neoplasms/genetics , Precision Medicine , Sequence Analysis, DNA/standards , High-Throughput Nucleotide Sequencing/methods , Humans , Limit of Detection , Practice Guidelines as Topic , Reproducibility of Results
9.
Cell Rep Methods ; 1(7): 100106, 2021 11 22.
Article in English | MEDLINE | ID: mdl-35475002

ABSTRACT

The primary objective of the FDA-led Sequencing and Quality Control Phase 2 (SEQC2) project is to develop standard analysis protocols and quality control metrics for use in DNA testing to enhance scientific research and precision medicine. This study reports a targeted next-generation sequencing (NGS) method that will enable more accurate detection of actionable mutations in circulating tumor DNA (ctDNA) clinical specimens. To accomplish this, a synthetic internal standard spike-in was designed for each actionable mutation target, suitable for use in NGS following hybrid capture enrichment and unique molecular index (UMI) or non-UMI library preparation. When mixed with contrived ctDNA reference samples, internal standards enabled calculation of technical error rate, limit of blank, and limit of detection for each variant at each nucleotide position in each sample. True-positive mutations with variant allele fraction too low for detection by current practice were detected with this method, thereby increasing sensitivity.


Subject(s)
Circulating Tumor DNA , Humans , Circulating Tumor DNA/genetics , Mutation/genetics , High-Throughput Nucleotide Sequencing/methods , Precision Medicine/methods , Quality Control
12.
Cancers (Basel) ; 12(3)2020 Mar 07.
Article in English | MEDLINE | ID: mdl-32156016

ABSTRACT

Immune cell infiltrates within the tumor microenvironment can influence treatment response and outcome in several cancers. In this study, we developed RNA-based immune signatures from pan-cancer analysis that could serve as potential markers across tumor types and tested them for association with outcome in high-grade serous ovarian cancer (HGSOC) and other female cancers. Pan-cancer RNA-Seq cluster analysis of immune-related gene expression profiles in The Cancer Genome Atlas (TCGA) from 29 different solid tumors (4446 specimens) identified distinct but concordant gene signatures. Among these immune signatures, Cytotoxic Lymphocyte Immune Signature (CLIS), T-cell trafficking (TCT), and the TCT to M2 tumor-associated macrophage (M2TAM) ratio (TCT:M2TAM) were significantly (p < 0.05) associated with overall survival (OS), using multivariable Cox proportional hazards regression models, in a discovery cohort and two independent validation cohorts of HGSOC patients. Notably, the TCT:M2TAM ratio was highly significant (p ≤ 0.000001) in two HGSOC cohorts. Immune signatures were also significant (p < 0.05) in the presence of tumor cytoreduction, BRCA1/2 mutation, and COL2A1 expression. Importantly, the CLIS and TCT signatures were also validated for prognostic significance (p < 0.05) in TCGA cohorts for endometrial and high tumor mutational burden (Hi-TMB) breast cancer. These immune signatures also have the potential for being predictive in other cancers and for patients following different treatment strategies.

13.
BMC Bioinformatics ; 21(1): 98, 2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32143562

ABSTRACT

BACKGROUND: Cancer associated copy number variation (CNV) events provide important information for identifying patient subgroups and suggesting treatment strategies. Technical and logistical issues, however, make it challenging to accurately detect abnormal copy number events in a cost-effective manner in clinical studies. RESULTS: Here we present CNV Radar, a software tool that utilizes next-generation sequencing read depth information and variant allele frequency patterns, to infer the true copy number status of genes and genomic regions from whole exome sequencing data. Evaluation of CNV Radar in a public multiple myeloma dataset demonstrated that CNV Radar was able to detect a variety of CNVs associated with risk of progression, and we observed > 70% concordance with fluorescence in situ hybridization (FISH) results. Compared to other CNV callers, CNV Radar showed high sensitivity and specificity. Similar results were observed when comparing CNV Radar calls to single nucleotide polymorphism array results from acute myeloid leukemia and prostate cancer datasets available on TCGA. More importantly, CNV Radar demonstrated its utility in the clinical trial setting: in POLLUX and CASTOR, two phase 3 studies in patients with relapsed or refractory multiple myeloma, we observed a high concordance rate with FISH for del17p, a risk defining CNV event (88% in POLLUX and 90% in CASTOR), therefore allowing for efficacy assessments in clinically relevant disease subgroups. Our case studies also showed that CNV Radar is capable of detecting abnormalities such as copy-neutral loss of heterozygosity that elude other approaches. CONCLUSIONS: We demonstrated that CNV Radar is more sensitive than other CNV detection methods, accurately detects clinically important cytogenetic events, and allows for further interrogation of novel disease biology. Overall, CNV Radar exhibited high concordance with standard methods such as FISH, and its success in the POLLUX and CASTOR clinical trials demonstrated its potential utility for informing clinical and therapeutic decisions.


Subject(s)
DNA Copy Number Variations , Leukemia, Myeloid, Acute/genetics , Prostatic Neoplasms/genetics , Software , Algorithms , Area Under Curve , High-Throughput Nucleotide Sequencing , Humans , In Situ Hybridization, Fluorescence , Leukemia, Myeloid, Acute/pathology , Male , Polymorphism, Single Nucleotide , Prostatic Neoplasms/pathology , ROC Curve
14.
Cancer Res ; 79(15): 3916-3927, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31182547

ABSTRACT

Regulatory T cells (Treg) are immunosuppressive and negatively impact response to cancer immunotherapies. CREB-binding protein (CBP) and p300 are closely related acetyltransferases and transcriptional coactivators. Here, we evaluate the mechanisms by which CBP/p300 regulate Treg differentiation and the consequences of CBP/p300 loss-of-function mutations in follicular lymphoma. Transcriptional and epigenetic profiling identified a cascade of transcription factors essential for Treg differentiation. Mass spectrometry analysis showed that CBP/p300 acetylates prostacyclin synthase, which regulates Treg differentiation by altering proinflammatory cytokine secretion by T and B cells. Reduced Treg presence in tissues harboring CBP/p300 loss-of-function mutations was observed in follicular lymphoma. Our findings provide novel insights into the regulation of Treg differentiation by CBP/p300, with potential clinical implications on alteration of the immune landscape. SIGNIFICANCE: This study provides insights into the dynamic role of CBP/p300 in the differentiation of Tregs, with potential clinical implications in the alteration of the immune landscape in follicular lymphoma.


Subject(s)
CREB-Binding Protein/immunology , E1A-Associated p300 Protein/immunology , Lymphoma, Follicular/immunology , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology , Acetylation , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CREB-Binding Protein/antagonists & inhibitors , CREB-Binding Protein/genetics , Cell Differentiation/physiology , Down-Regulation , E1A-Associated p300 Protein/antagonists & inhibitors , E1A-Associated p300 Protein/genetics , Histones/metabolism , Humans , Lymphoma, Follicular/genetics , Lymphoma, Follicular/metabolism , Lymphoma, Follicular/pathology , Mutation , Pyrazoles/pharmacology , Pyridines/pharmacology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Transcription, Genetic , Transcriptome
15.
Sci Rep ; 9(1): 6980, 2019 05 06.
Article in English | MEDLINE | ID: mdl-31061401

ABSTRACT

The National Cancer Institute conducted the Biospecimen Pre-analytical Variables (BPV) study to determine the effects of formalin fixation and delay to fixation (DTF) on the analysis of nucleic acids. By performing whole transcriptome sequencing and small RNA profiling on matched snap-frozen and FFPE specimens exposed to different delays to fixation, this study aimed to determine acceptable delays to fixation and proper workflow for accurate and reliable Next-Generation Sequencing (NGS) analysis of FFPE specimens. In comparison to snap-freezing, formalin fixation changed the relative proportions of intronic/exonic/untranslated RNA captured by RNA-seq for most genes. The effects of DTF on NGS analysis were negligible. In 80% of specimens, a subset of RNAs was found to differ between snap-frozen and FFPE specimens in a consistent manner across tissue groups; this subset was unaffected in the remaining 20% of specimens. In contrast, miRNA expression was generally stable across various formalin fixation protocols, but displayed increased variability following a 12 h delay to fixation.


Subject(s)
Formaldehyde/adverse effects , MicroRNAs/genetics , Neoplasms/pathology , Paraffin Embedding/methods , RNA/genetics , Sequence Analysis, RNA/methods , Tissue Fixation/methods , Cryopreservation , Fixatives/adverse effects , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/isolation & purification , MicroRNAs/metabolism , Neoplasms/genetics , RNA/isolation & purification , RNA/metabolism , Exome Sequencing
16.
J Pathol ; 248(3): 352-362, 2019 07.
Article in English | MEDLINE | ID: mdl-30883751

ABSTRACT

High grade serous ovarian carcinoma (HGSC) without identifiable serous tubal intraepithelial carcinoma (STIC) within the fallopian tube (FT) occurs in approximately 50% of patients. The objective of this study was to use a multisite tumor sampling approach to study HGSC with and without STIC. RNAseq analysis of HGSC samples collected from multiple sites e.g. ovary, FT and peritoneum, revealed moderate levels of intrapatient heterogeneity in gene expression that could influence molecular profiles. Mixed-model ANOVA analysis of gene expression in tumor samples from patients with multiple tumor sites (n = 13) and patients with a single site tumor sample (n = 11) to compare HGSC-STIC to HGSC-NOSTIC identified neurotensin (NTS) as significantly higher (> two-fold change, False Discovery Rate (FDR) < 0.10) in HGSC-STIC. This data was validated using publicly available RNA-Seq datasets. Concordance between higher NTS gene expression and NTS peptide levels in HGSC-STIC samples was demonstrated by immunohistochemistry. To determine the role of NTS in HGSC, five ovarian cancer (OvCa) cell lines were screened for expression of NTS and its receptors, NTSR1 and NTSR3. Increased expression of NTS and NSTR1 was observed in several of the OvCa cells, whereas the NTSR3 receptor was lower in all OvCa cells, compared to immortalized FT epithelial cells. Treatment with NTSR1 inhibitor (SR48692) decreased cell proliferation, but increased cell migration in OvCa cells. The effects of SR48692 were receptor mediated, since transient RNAi knockdown of NTSR1 mimicked the migratory effects and knockdown of NTSR3 mimicked the anti-proliferative effects. Further, knockdown of NTSR1 or NTSR3 was associated with acquisition of distinct morphological phenotypes, epithelial or mesenchymal, respectively. Taken together, our results reveal a difference in a biologically active pathway between HGSC with and without STIC. Furthermore, we identify neurotensin signaling as an important pathway involved in cell proliferation and epithelial-mesenchymal transition in HGSC-STIC which warrants further study as a potential therapeutic target. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Subject(s)
Carcinoma, Ovarian Epithelial/pathology , Fallopian Tube Neoplasms/pathology , Neurotensin/metabolism , Ovarian Neoplasms/pathology , Carcinoma in Situ/pathology , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/pathology , Epithelial Cells/pathology , Fallopian Tube Neoplasms/genetics , Fallopian Tubes/pathology , Female , Humans , Immunohistochemistry/methods , Ovarian Neoplasms/genetics , Tumor Suppressor Protein p53/genetics
17.
Dis Model Mech ; 12(1)2019 01 25.
Article in English | MEDLINE | ID: mdl-30642872

ABSTRACT

Fibrillin is an evolutionarily ancient protein that lends elasticity and resiliency to a variety of tissues. In humans, mutations in fibrillin-1 cause Marfan and related syndromes, conditions in which the eye is often severely affected. To gain insights into the ocular sequelae of Marfan syndrome, we targeted Fbn1 in mouse lens or non-pigmented ciliary epithelium (NPCE). Conditional knockout of Fbn1 in NPCE, but not lens, profoundly affected the ciliary zonule, the system of fibrillin-rich fibers that centers the lens in the eye. The tensile strength of the fibrillin-depleted zonule was reduced substantially, due to a shift toward production of smaller caliber fibers. By 3 months, zonular fibers invariably ruptured and mice developed ectopia lentis, a hallmark of Marfan syndrome. At later stages, untethered lenses lost their polarity and developed cataracts, and the length and volume of mutant eyes increased. This model thus captures key aspects of Marfan-related syndromes, providing insights into the role of fibrillin-1 in eye development and disease.


Subject(s)
Ectopia Lentis/genetics , Ectopia Lentis/pathology , Eye/pathology , Fibrillin-1/genetics , Gene Deletion , Marfan Syndrome/genetics , Marfan Syndrome/pathology , Animals , Ciliary Body , Epithelium/metabolism , Mice , Phenotype
18.
Oncoimmunology ; 7(10): e1490854, 2018.
Article in English | MEDLINE | ID: mdl-30386679

ABSTRACT

Mounting evidence supports a role for the immune system in breast cancer outcomes. The ability to distinguish highly immunogenic tumors susceptible to anti-tumor immunity from weakly immunogenic or inherently immune-resistant tumors would guide development of therapeutic strategies in breast cancer. Genomic, transcriptomic and clinical data from The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) breast cancer cohorts were used to examine statistical associations between tumor mutational burden (TMB) and the survival of patients whose tumors were assigned to previously-described prognostic immune subclasses reflecting favorable, weak or poor immune-infiltrate dispositions (FID, WID or PID, respectively). Tumor immune subclasses were associated with survival in patients with high TMB (TMB-Hi, P < 0.001) but not in those with low TMB (TMB-Lo, P = 0.44). This statistical relationship was confirmed in the METABRIC cohort (TMB-Hi, P = 0.047; TMB-Lo, P = 0.39), and also found to hold true in the more-indolent Luminal A tumor subtype (TMB-Hi, P = 0.011; TMB-Lo, P = 0.91). In TMB-Hi tumors, the FID subclass was associated with prolonged survival independent of tumor stage, molecular subtype, age and treatment. Copy number analysis revealed the reproducible, preferential amplification of chromosome 1q immune-regulatory genes in the PID immune subclass. These findings demonstrate a previously unappreciated role for TMB as a determinant of immune-mediated survival of breast cancer patients and identify candidate immune-regulatory mechanisms associated with immunologically cold tumors. Immune subtyping of breast cancers may offer opportunities for therapeutic stratification.

19.
Gynecol Oncol Rep ; 23: 41-44, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29892687

ABSTRACT

Neurofibromatosis type 1 (NF1) is caused by mutations in the NF1 gene encoding neurofibromin, which negatively regulates Ras signaling. NF1 patients have an increased risk of developing early onset breast cancer, however, the association between NF1 and high grade serous ovarian cancer (HGSOC) is unclear. Since most NF1-related tumors exhibit early biallelic inactivation of NF1, we evaluated the evolution of genetic alterations in HGSOC in an NF1 patient. Somatic variation analysis of whole exome sequencing of tumor samples from both ovaries and a peritoneal metastasis showed a clonal lineage originating from an ancestral clone within the left adnexa, which exhibited copy number (CN) loss of heterozygosity (LOH) in the region of chromosome 17 containing TP53, NF1, and BRCA1 and mutation of the other TP53 allele. This event led to biallelic inactivation of NF1 and TP53 and LOH for the BRCA1 germline mutation. Subsequent CN alterations were found in the dominant tumor clone in the left ovary and nearly 100% of tumor at other sites. Neurofibromin modeling studies suggested that the germline NF1 mutation could potentially alter protein function. These results demonstrate early, biallelic inactivation of neurofibromin in HGSOC and highlight the potential of targeting RAS signaling in NF1 patients.

20.
J Pers Med ; 8(2)2018 Apr 30.
Article in English | MEDLINE | ID: mdl-29710874

ABSTRACT

As part of the Heart Healthy Lenoir Project, we developed a practice level intervention to improve blood pressure control. The goal of this study was: (i) to determine if single nucleotide polymorphisms (SNPs) that associate with blood pressure variation, identified in large studies, are applicable to blood pressure control in subjects from a rural population; (ii) to measure the association of these SNPs with subjects' responsiveness to the hypertension intervention; and (iii) to identify other SNPs that may help understand patient-specific responses to an intervention. We used a combination of candidate SNPs and genome-wide analyses to test associations with either baseline systolic blood pressure (SBP) or change in systolic blood pressure one year after the intervention in two genetically defined ancestral groups: African Americans (AA) and Caucasian Americans (CAU). Of the 48 candidate SNPs, 13 SNPs associated with baseline SBP in our study; however, one candidate SNP, rs592582, also associated with a change in SBP after one year. Using our study data, we identified 4 and 15 additional loci that associated with a change in SBP in the AA and CAU groups, respectively. Our analysis of gene-age interactions identified genotypes associated with SBP improvement within different age groups of our populations. Moreover, our integrative analysis identified AQP4-AS1 and PADI2 as genes whose expression levels may contribute to the pleiotropy of complex traits involved in cardiovascular health and blood pressure regulation in response to an intervention targeting hypertension. In conclusion, the identification of SNPs associated with the success of a hypertension treatment intervention suggests that genetic factors in combination with age may contribute to an individual's success in lowering SBP. If these findings prove to be applicable to other populations, the use of this genetic variation in making patient-specific interventions may help providers with making decisions to improve patient outcomes. Further investigation is required to determine the role of this genetic variance with respect to the management of hypertension such that more precise treatment recommendations may be made in the future as part of personalized medicine.

SELECTION OF CITATIONS
SEARCH DETAIL