Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Arthritis Res Ther ; 23(1): 184, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34238346

ABSTRACT

BACKGROUND: The new concept of difficult-to-treat rheumatoid arthritis (D2T RA) refers to RA patients who remain symptomatic after several lines of treatment, resulting in a high patient and economic burden. During a hackathon, we aimed to identify and predict D2T RA patients in structured and unstructured routine care data. METHODS: Routine care data of 1873 RA patients were extracted from the Utrecht Patient Oriented Database. Data from a previous cross-sectional study, in which 152 RA patients were clinically classified as either D2T or non-D2T, served as a validation set. Machine learning techniques, text mining, and feature importance analyses were performed to identify and predict D2T RA patients based on structured and unstructured routine care data. RESULTS: We identified 123 potentially new D2T RA patients by applying the D2T RA definition in structured and unstructured routine care data. Additionally, we developed a D2T RA identification model derived from a feature importance analysis of all available structured data (AUC-ROC 0.88 (95% CI 0.82-0.94)), and we demonstrated the potential of longitudinal hematological data to differentiate D2T from non-D2T RA patients using supervised dimension reduction. Lastly, using data up to the time of starting the first biological treatment, we predicted future development of D2TRA (AUC-ROC 0.73 (95% CI 0.71-0.75)). CONCLUSIONS: During this hackathon, we have demonstrated the potential of different techniques for the identification and prediction of D2T RA patients in structured as well as unstructured routine care data. The results are promising and should be optimized and validated in future research.


Subject(s)
Arthritis, Rheumatoid , Arthritis, Rheumatoid/diagnosis , Arthritis, Rheumatoid/drug therapy , Databases, Factual , Humans , Machine Learning
3.
Front Neuroinform ; 11: 3, 2017.
Article in English | MEDLINE | ID: mdl-28197090

ABSTRACT

Magnetic resonance imaging (MRI) has become increasingly important in ischemic stroke experiments in mice, especially because it enables longitudinal studies. Still, quantitative analysis of MRI data remains challenging mainly because segmentation of mouse brain lesions in MRI data heavily relies on time-consuming manual tracing and thresholding techniques. Therefore, in the present study, a fully automated approach was developed to analyze longitudinal MRI data for quantification of ischemic lesion volume progression in the mouse brain. We present a level-set-based lesion segmentation algorithm that is built using a minimal set of assumptions and requires only one MRI sequence (T2) as input. To validate our algorithm we used a heterogeneous data set consisting of 121 mouse brain scans of various age groups and time points after infarct induction and obtained using different MRI hardware and acquisition parameters. We evaluated the volumetric accuracy and regional overlap of ischemic lesions segmented by our automated method against the ground truth obtained in a semi-automated fashion that includes a highly time-consuming manual correction step. Our method shows good agreement with human observations and is accurate on heterogeneous data, whilst requiring much shorter average execution time. The algorithm developed here was compiled into a toolbox and made publically available, as well as all the data sets.

SELECTION OF CITATIONS
SEARCH DETAIL
...