Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Diagnostics (Basel) ; 14(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38786300

ABSTRACT

BACKGROUND: Prostate-specific membrane antigen (PSMA) is a type II transmembrane glycoprotein overexpressed on the surface of tumor cells in most of the patients affected by prostate adenocarcinoma (PCa). However, PSMA expression has also been demonstrated in the endothelial cells of newly formed vessels of various solid tumors, suggesting a role for PSMA in neoangiogenesis. In this scenario, gallium-68 (68Ga) or fluoro-18 (18F)-labeled PSMA positron emission tomography (PET) may play a role in tumors other than PCa, generally evaluated employing other radiopharmaceuticals targeting different pathways. This review aims to investigate the detection rate of PSMA-PET compared to other radiopharmaceuticals (especially [18F]FDG) in non-prostate tumors to identify patients who may benefit from the use of such a theragnostic agent. METHODS: We performed a bibliographic search on three different databases until February 2024 using the following terms: "positron emission tomography", "PET", "PET/CT", "Prostate-specific membrane antigen", "PSMA", "non-prostate", "not prostate cancer", "solid tumor", "FDG", "Fluorodeoxyglucose", "FAPi", "FET", "MET", "DOPA", "choline", "FCH", "FES", "DOTATOC", "DOTANOC", and "DOTATATE". Only original articles edited in English with at least 10 patients were included. RESULTS: Out of a total of 120 articles, only 25 original articles comparing PSMA with other radiotracers were included in this study. The main evidence was demonstrated in renal cell carcinoma, where PSMA showed a higher detection rate compared to [18F]FDG PET/CT, with implications for patient management. PSMA PET may also improve the assessment of other entities, such as gliomas, in defining regions of early neoangiogenesis. Further data are needed to evaluate the potential role of PSMA-PET in triple-negative breast cancer as a novel therapeutic vascular target. Finally, unclear applications of PSMA-PET include thyroid and gastrointestinal tumors. CONCLUSIONS: The present review shows the potential use of PSMA-labeled PET/CT in solid tumors beyond PCa, underlining its value over other radiopharmaceuticals (mainly [18F]FDG). Prospective clinical trials with larger sample sizes are crucial to further investigate these possible clinical applications.

2.
Parkinsonism Relat Disord ; 122: 106061, 2024 May.
Article in English | MEDLINE | ID: mdl-38430691

ABSTRACT

INTRODUCTION: Early-onset dementia with Lewy bodies (EO-DLB) is associated with rapid cognitive decline and severe neuropsychiatric symptoms at onset. METHODS: Using FDG-PET imaging for 62 patients (21 EO-DLB, 41 LO (late-onset)-DLB), we explored brain hypometabolism, and metabolic connectivity in the whole-brain network and resting-state networks (RSNs). We also evaluated the spatial association between brain hypometabolism and neurotransmitter pathways topography. RESULTS: Direct comparisons between the two clinical subgroups showed that EO-DLB was characterized by a lower metabolism in posterior cingulate/precuneus and occipital cortex. Metabolic connectivity analysis revealed significant alterations in posterior regions in both EO-DLB and LO-DLB. The EO-DLB, however, showed more severe loss of connectivity between occipital and parietal nodes and hyperconnectivity between frontal and cerebellar nodes. Spatial topography association analysis indicated significant correlations between neurotransmitter maps (i.e. acetylcholine, GABA, serotonin, dopamine) and brain hypometabolism in both EO and LO-DLB, with significantly higher metabolic correlation in the presynaptic serotonergic system for EO-DLB, supporting its major dysfunction. CONCLUSIONS: Our study revealed greater brain hypometabolism and loss of connectivity in posterior brain region in EO- than LO-DLB. Serotonergic mapping emerges as a relevant factor for further investigation addressing clinical differences between DLB subtypes.


Subject(s)
Brain , Lewy Body Disease , Neurotransmitter Agents , Positron-Emission Tomography , Humans , Lewy Body Disease/diagnostic imaging , Lewy Body Disease/metabolism , Male , Female , Aged , Brain/diagnostic imaging , Brain/metabolism , Neurotransmitter Agents/metabolism , Middle Aged , Aged, 80 and over , Age of Onset , Brain Mapping , Nerve Net/diagnostic imaging , Nerve Net/metabolism , Fluorodeoxyglucose F18 , Neural Pathways/diagnostic imaging , Neural Pathways/metabolism
3.
Cancers (Basel) ; 16(4)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38398230

ABSTRACT

(1) Background: Thyroid cancer (TC) is often treated with surgery followed by iodine-131. Up to 50% of the instances of TC lose their avidity to 131I, becoming more aggressive. In this scenario, [18F]FDG PET/CT imaging is used for evaluating the widespread nature of the disease, despite its low sensitivity and a false negative rate of 8-21.1%. A novel class of PET agents targeting the fibroblast activation protein inhibitor (FAPi) has emerged, studied particularly for their potential application to theranostics. (2) Methods: A search of the literature was performed by two independent authors (P.G. and L.E.) using the PubMed, Scopus, Web of Science, Cochrane Library, and EMBASE databases. The following terms were used: "FAP" or "FAPi" or "Fibroblast activating protein" and "thyroid" or "thyroid cancer", in different combinations. The included papers were original articles, clinical studies, and case reports in the English language. No time limits were used. Editorials, conference papers, reviews, and preclinical studies were excluded. (3) Results: There were 31 papers that were selected. Some studies reported a low or absent FAPi uptake in TC lesions; others reported promising findings for the detection of metastases. (4) Conclusions: The preliminary results are encouraging. FAPI agents are an alternative to [18F]FDG and a promising theranostic tool. However, further studies with a larger population are needed.

4.
Hematol Rep ; 16(1): 32-41, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38247994

ABSTRACT

Fluorine-18 fluorodeoxyglucose ([18F]FDG) is nowadays the leading positron emission tomography (PET) tracer for routine clinical work-ups in hematological malignancies; however, it is limited by false positive findings. Notably, false positives can occur in inflammatory and infective cases or in necrotic tumors that are infiltrated by macrophages and other inflammatory cells. In this context, 3'-deoxy-3'-[18F]fluorothymidine ([18F]FLT) has been shown to be a promising imaging biomarker of hematological malignant cell proliferation. In this review, a total of 15 papers were reviewed to collect literature data regarding the clinical application of [18F]FLT PET/CT in hematological malignancies. This imaging modality seems to be a suitable tool for noninvasive assessment of tumor grading, also showing a correlation with Ki-67 immunostaining. Moreover, [18F]FLT PET/CT demonstrated high sensitivity in detecting aggressive lymphoma lesions, especially when applying a standardized uptake value (SUV) cutoff of 3. At baseline, the potential of [18F]FLT imaging as a predictive tool is demonstrated by the low tracer uptake in patients with a complete response. However, its use is limited in evaluating bone diseases due to its high physiological uptake in bone marrow. Interim [18F]FLT PET/CT (iFLT) has the potential to identify high-risk patients with greater precision than [18F]FDG PET/CT, optimizing risk-adapted therapy strategies. Moreover, [18F]FLT uptake showed a greater ability to differentiate tumor from inflammation compared to [18F]FDG, allowing the reduction of false-positive findings and making the first one a more selective tracer. Finally, FLT emerges as a superior independent predictor of PFS and OS compared to FDG and ensures a reliable early response assessment with greater accuracy and predictive value.

5.
Heliyon ; 10(1): e23340, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38163125

ABSTRACT

In Mild Cognitive Impairment (MCI), the study of brain metabolism, provided by 18F-FluoroDeoxyGlucose Positron Emission Tomography (18F-FDG PET) can be integrated with brain perfusion through pseudo-Continuous Arterial Spin Labeling Magnetic Resonance sequences (MR pCASL). Cortical hypometabolism identification generally relies on wide control group datasets; pCASL control groups are instead not publicly available yet, due to lack of standardization in the acquisition parameters. This study presents a quantitative pipeline to be applied to PET and pCASL data to coherently analyze metabolism and perfusion inside 16 matching cortical regions of interest (ROIs) derived from the AAL3 atlas. The PET line is tuned on 36 MCI patients and 107 healthy control subjects, to agree in identifying hypometabolic regions with clinical reference methods (visual analysis supported by a vendor tool and Statistical Parametric Mapping, SPM, with two parametrizations here identified as SPM-A and SPM-B). The analysis was conducted for each ROI separately. The proposed PET analysis pipeline obtained accuracy 78 % and Cohen's к 60 % vs visual analysis, accuracy 79 % and Cohen's к 58 % vs SPM-A, accuracy 77 % and Cohen's к 54 % vs SPM-B. Cohen's к resulted not significantly different from SPM-A and SPM-B Cohen's к when assuming visual analysis as reference method (p-value 0.61 and 0.31 respectively). Considering SPM-A as reference method, Cohen's к is not significantly different from SPM-B Cohen's к as well (p-value = 1.00). The complete PET-pCASL pipeline was then preliminarily applied on 5 MCI patients and metabolism-perfusion regional correlations were assessed. The proposed approach can be considered as a promising tool for PET-pCASL joint analyses in MCI, even in the absence of a pCASL control group, to perform metabolism-perfusion regional correlation studies, and to assess and compare perfusion in hypometabolic or normo-metabolic areas.

6.
Life (Basel) ; 13(9)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37763225

ABSTRACT

FAPI-based radiopharmaceuticals are a novel class of tracers, mainly used for PET imaging, which have demonstrated several advantages over [18F]FDG, especially in the case of low-grade or well-differentiated tumors. We conducted this systematic review to evaluate all the studies where a head-to-head comparison had been performed to explore the potential utility of FAPI tracers in clinical practice. FAPI-based radiopharmaceuticals have shown promising results globally, in particular in detecting peritoneal carcinomatosis, but studies with wider populations are needed to better understand all the advantages of these new radiopharmaceuticals.

7.
Front Med (Lausanne) ; 10: 1133269, 2023.
Article in English | MEDLINE | ID: mdl-36910493

ABSTRACT

Introduction: State of the art artificial intelligence (AI) models have the potential to become a "one-stop shop" to improve diagnosis and prognosis in several oncological settings. The external validation of AI models on independent cohorts is essential to evaluate their generalization ability, hence their potential utility in clinical practice. In this study we tested on a large, separate cohort a recently proposed state-of-the-art convolutional neural network for the automatic segmentation of intraprostatic cancer lesions on PSMA PET images. Methods: Eighty-five biopsy proven prostate cancer patients who underwent 68Ga PSMA PET for staging purposes were enrolled in this study. Images were acquired with either fully hybrid PET/MRI (N = 46) or PET/CT (N = 39); all participants showed at least one intraprostatic pathological finding on PET images that was independently segmented by two Nuclear Medicine physicians. The trained model was available at https://gitlab.com/dejankostyszyn/prostate-gtv-segmentation and data processing has been done in agreement with the reference work. Results: When compared to the manual contouring, the AI model yielded a median dice score = 0.74, therefore showing a moderately good performance. Results were robust to the modality used to acquire images (PET/CT or PET/MRI) and to the ground truth labels (no significant difference between the model's performance when compared to reader 1 or reader 2 manual contouring). Discussion: In conclusion, this AI model could be used to automatically segment intraprostatic cancer lesions for research purposes, as instance to define the volume of interest for radiomics or deep learning analysis. However, more robust performance is needed for the generation of AI-based decision support technologies to be proposed in clinical practice.

8.
J Pers Med ; 12(10)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36294804

ABSTRACT

Recent European guidelines recommend using brain FDG-PET to differentiate between Alzheimer's disease (AD) and depressive pseudodementia (DP), with specific hypometabolism patterns across the former group, and typically normal or frontal hypometabolism in the latter. We report the case of a 74 years-old man with DP (MMSE 16/30), whose FDG-PET visual rating and semiquantitative analysis closely mimicked the typical AD pattern, showing severe hypometabolism in bilateral precuneus, parietal and temporal lobes, and sparing frontal areas, suggesting the diagnosis of moderate AD. Shortly after starting antidepressant polytherapy, he underwent formal NPS testing, which revealed moderate impairment of episodic memory and mild impairment on executive and visuospatial tests, judged consistent with neurodegenerative dementia and concomitant depression. Over the following two years, he improved dramatically: repeated NPS assessment did not show significant deficits, and FDG-PET showed restoration of cerebral metabolism. The confirmation of PET findings via semiquantitative analysis, and their reversion to normality with antidepressant treatment, proved the non-neurodegenerative origin of the initial AD-like FDG-PET abnormalities. We review similar cases and provide a comprehensive analysis of their implications, concluding that reversible FDG-PET widespread hypometabolism might represent a biomarker of pseudodementia. Therefore, we suggest caution when interpreting FDG-PET scans of depressed patients with cognitive impairment.

SELECTION OF CITATIONS
SEARCH DETAIL
...