Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Med (Lausanne) ; 11: 1352803, 2024.
Article in English | MEDLINE | ID: mdl-38298814

ABSTRACT

Repurposing is one of the key opportunities to address the unmet rare diseases therapeutic need. Based on cases of drug repurposing in small population conditions, and previous work in drug repurposing, we analyzed the most important lessons learned, such as the sharing of clinical observations, reaching out to regulatory scientific advice at an early stage, and public-private collaboration. In addition, current upcoming trends in the field of drug repurposing in rare diseases were analyzed, including the role these trends could play in the rare diseases' ecosystem. Specifically, we cover the opportunities of innovation platforms, the use of real-world data, the use of artificial intelligence, regulatory initiatives in repurposing, and patient engagement throughout the repurposing project. The outcomes from these emerging activities will help progress the field of drug repurposing for the benefit of patients, public health and medicines development.

2.
Orphanet J Rare Dis ; 18(1): 229, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37537670

ABSTRACT

Drug development is a complex, resource intensive and long process in any disease area, and developing medicines to treat rare diseases presents even more challenges due to the small patient populations, often limited disease knowledge, heterogeneous clinical manifestations, and disease progression. However, common to all drug development programs is the need to gather as much information as possible on both the disease and the patients' needs ahead of the development path definition. Here, we propose a checklist named START, a tool that provides an overview of the key pillars to be considered when starting an orphan drug development: STakeholder mapping, Available information on the disease, Resources, and Target patient value profile. This tool helps to build solid foundations of a successful patient-centered medicines development program and guides different types of developers through a set of questions to ask for guidance through the starting phase of a rare disease therapeutic pathway.


Subject(s)
Orphan Drug Production , Rare Diseases , Humans , Rare Diseases/drug therapy , Drug Development
3.
Orphanet J Rare Dis ; 14(1): 225, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31615551

ABSTRACT

The number of available therapies for rare diseases remains low, as fewer than 6% of rare diseases have an approved treatment option. The International Rare Diseases Research Consortium (IRDiRC) set up the multi-stakeholder Data Mining and Repurposing (DMR) Task Force to examine the potential of applying biomedical data mining strategies to identify new opportunities to use existing pharmaceutical compounds in new ways and to accelerate the pace of drug development for rare disease patients. In reviewing past successes of data mining for drug repurposing, and planning for future biomedical research capacity, the DMR Task Force identified four strategic infrastructure investment areas to focus on in order to accelerate rare disease research productivity and drug development: (1) improving the capture and sharing of self-reported patient data, (2) better integration of existing research data, (3) increasing experimental testing capacity, and (4) sharing of rare disease research and development expertise. Additionally, the DMR Task Force also recommended a number of strategies to increase data mining and repurposing opportunities for rare diseases research as well as the development of individualized and precision medicine strategies.


Subject(s)
Biomedical Research , Data Mining , Drug Repositioning , Rare Diseases/drug therapy , Big Data , Databases, Factual , Humans
4.
BMC Med Ethics ; 20(1): 55, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31370847

ABSTRACT

BACKGROUND: Rare Disease research has seen tremendous advancements over the last decades, with the development of new technologies, various global collaborative efforts and improved data sharing. To maximize the impact of and to further build on these developments, there is a need for model consent clauses for rare diseases research, in order to improve data interoperability, to meet the informational needs of participants, and to ensure proper ethical and legal use of data sources and participants' overall protection. METHODS: A global Task Force was set up to develop model consent clauses specific to rare diseases research, that are comprehensive, harmonized, readily accessible, and internationally applicable, facilitating the recruitment and consent of rare disease research participants around the world. Existing consent forms and notices of consent were analyzed and classified under different consent themes, which were used as background to develop the model consent clauses. RESULTS: The IRDiRC-GA4GH MCC Task Force met in September 2018, to discuss and design model consent clauses. Based on analyzed consent forms, they listed generic core elements and designed the following rare disease research specific core elements; Rare Disease Research Introductory Clause, Familial Participation, Audio/Visual Imaging, Collecting, storing, sharing of rare disease data, Recontact for matching, Data Linkage, Return of Results to Family Members, Incapacity/Death, and Benefits. CONCLUSION: The model consent clauses presented in this article have been drafted to highlight consent elements that bear in mind the trends in rare disease research, while providing a tool to help foster harmonization and collaborative efforts.


Subject(s)
Biomedical Research/ethics , Consent Forms/standards , Informed Consent/standards , Rare Diseases/therapy , Biomedical Research/methods , Biomedical Research/standards , Consent Forms/ethics , Humans , Informed Consent/ethics
5.
Orphanet J Rare Dis ; 13(1): 195, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30400970

ABSTRACT

BACKGROUND: Orphan drug development faces numerous challenges, including low disease prevalence, patient population heterogeneity, and strong presence of paediatric patient populations. Consequently, clinical trials for orphan drugs are often smaller than those of non-orphan drugs, and they require the development of efficient trial designs relevant to small populations to gain the most information from the available data. The International Rare Diseases Research Consortium (IRDiRC) is aimed at promoting international collaboration and advance rare diseases research worldwide, and has as one of its goals to contribute to 1000 new therapies for rare diseases. IRDiRC set up a Small Population Clinical Trials (SPCT) Task Force in order to address the shortcomings of our understanding in carrying out clinical trials in rare diseases. RESULTS: The IRDiRC SPCT Task Force met in March 2016 to discuss challenges faced in the design of small studies for rare diseases and present their recommendations, structured around six topics: different study methods/designs and their relation to different characteristics of medical conditions, adequate safety data, multi-arm trial designs, decision analytic approaches and rational approaches to adjusting levels of evidence, extrapolation, and patients' engagement in study design. CONCLUSIONS: Recommendations have been issued based on discussions of the Small Population Clinical Trials Task Force that aim to contribute towards successful therapy development and clinical use. While randomised clinical trials are still considered the gold standard, it is recommended to systematically take into consideration alternative trial design options when studying treatments for a rare disease. Combining different sources of safety data is important to give a fuller picture of a therapy's safety profile. Multi-arm trials should be considered an opportunity for rare diseases therapy development, and funders are encouraged to support such trial design via international networks. Patient engagement is critical in trial design and therapy development, a process which sponsors are encouraged to incorporate when conducting trials and clinical studies. Input from multiple regulatory agencies is recommended early and throughout clinical development. Regulators are often supportive of new clinical trial designs, provided they are well thought through and justified, and they also welcome discussions and questions on this topic. Parallel advice for multiregional development programs should also be considered.


Subject(s)
Biomedical Research/methods , Rare Diseases , Clinical Trials as Topic , Humans , Research Design
SELECTION OF CITATIONS
SEARCH DETAIL
...