Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Pharmacol ; 133(4): 575-85, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11399675

ABSTRACT

Individual pancreatic beta-cells are functionally heterogeneous. Their sensitivity to glucose is variable, so that the proportion of active cells increases with the glucose concentration (recruitment). We have investigated whether sulphonylureas also recruit beta-cells, by measuring cytoplasmic Ca(2+) ([Ca(2+)](i)) - the triggering signal of insulin secretion - in single cells and clusters of cells prepared from mouse islets. In 4 mM glucose, the threshold concentration of tolbutamide inducing a [Ca(2+)](i) rise was variable (5 - 50 microM). The proportion of responsive cells and clusters therefore increased with the tolbutamide concentration, to reach a maximum of 90% of the cells and 100% of the clusters. This recruitment occurred faster when the glucose concentration was increased from 4 to 5 mM (EC(50) of approximately 14 and approximately 4 microM tolbutamide respectively). Within responsive clusters little recruitment was observed; when a cluster was active, all or nearly all cells were active probably because of cell coupling. Thus, tolbutamide-induced [Ca(2+)](i) oscillations were synchronous in all cells of each cluster, whereas there was no synchrony between clusters or individual cells. Independently of cell recruitment, tolbutamide gradually augmented the magnitude of the [Ca(2+)](i) rise in single cells and clusters. This increase occurred over a broader range of concentrations than did recruitment (EC(50) of approximately 50 and 25 microM tolbutamide at 4 and 5 mM glucose respectively). Tolbutamide (10 microM) accelerated the recruitment of single cells and clusters brought about by increasing glucose concentrations (range of 3 - 7 mM instead of 4 - 10 mM glucose), and potentiated the amplification of the individual responses that glucose also produced. In conclusion, both metabolic (glucose) and pharmacologic (sulphonylurea) inhibition of K(+)-ATP channels recruits beta-cells to generate a [Ca(2+)](i) response. However, the response is not of an all-or-none type; it increases in amplitude with the concentration of either glucose or tolbutamide.


Subject(s)
Calcium/metabolism , Cell Movement/drug effects , Hypoglycemic Agents/pharmacology , Islets of Langerhans/drug effects , Tolbutamide/pharmacology , Animals , Female , Glucose/metabolism , In Vitro Techniques , Islets of Langerhans/metabolism , Islets of Langerhans/physiology , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/physiology , Mice , Potassium Channels
2.
Diabetes ; 50(3): 540-50, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11246873

ABSTRACT

The proportion of isolated single beta-cells developing a metabolic, biosynthetic, or secretory response increases with glucose concentration (recruitment). It is unclear whether recruitment persists in situ when beta-cells are coupled. We therefore measured the cytoplasmic free Ca2+ correction ([Ca2+]i) (the triggering signal of glucose-induced insulin secretion) in mouse islet single cells or clusters cultured for 1-2 days. In single cells, the threshold glucose concentration ranged between 6 and 10 mmol/l, at which concentration a maximum of approximately 65% responsive cells was reached. Only 13% of the cells did not respond to glucose plus tolbutamide. The proportion of clusters showing a [Ca2+]i rise increased from approximately 20 to 95% between 6 and 10 mmol/l glucose, indicating that the threshold sensitivity to glucose differs between clusters. Within responsive clusters, 75% of the cells were active at 6 mmol/l glucose and 95-100% at 8-10 mmol/l glucose, indicating that individual cell recruitment is not prominent within clusters; in clusters responding to glucose, all or almost all cells participated in the response. Independently of cell recruitment, glucose gradually augmented the magnitude of the average [Ca2+]i rise in individual cells, whether isolated or associated in clusters. When insulin secretion was measured simultaneously with [Ca2+]i, a good temporal and quantitative correlation was found between both events. However, beta-cell recruitment was maximal at 10 mmol/l glucose, whereas insulin secretion increased up to 15-20 mmol/l glucose. In conclusion, beta-cell recruitment by glucose can occur at the stage of the [Ca2+]i response. However, this type of recruitment is restricted to a narrow range of glucose concentrations, particularly when beta-cell association decreases the heterogeneity of the responses. Glucose-induced insulin secretion by islets, therefore, cannot entirely be ascribed to recruitment of beta-cells to generate a [Ca2+]i response. Modulation of the amplitude of the [Ca2+]i response and of the action of Ca2+ on exocytosis (amplifying actions of glucose) may be more important.


Subject(s)
Calcium/metabolism , Cytoplasm/metabolism , Glucose/pharmacology , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Animals , Female , In Vitro Techniques , Insulin/metabolism , Insulin Secretion , Islets of Langerhans/cytology , Mice , Mice, Inbred Strains , Osmolar Concentration
3.
J Biol Chem ; 275(3): 1587-93, 2000 Jan 21.
Article in English | MEDLINE | ID: mdl-10636849

ABSTRACT

Glucose stimulation of pancreatic beta cells induces oscillations of the membrane potential, cytosolic Ca(2+) ([Ca(2+)](i)), and insulin secretion. Each of these events depends on glucose metabolism. Both intrinsic oscillations of metabolism and repetitive activation of mitochondrial dehydrogenases by Ca(2+) have been suggested to be decisive for this oscillatory behavior. Among these dehydrogenases, mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH), the key enzyme of the glycerol phosphate NADH shuttle, is activated by cytosolic [Ca(2+)](i). In the present study, we compared different types of oscillations in beta cells from wild-type and mGPDH(-/-) mice. In clusters of 5-30 islet cells and in intact islets, 15 mM glucose induced an initial drop of [Ca(2+)](i), followed by an increase in three phases: a marked initial rise, a partial decrease with rapid oscillations and eventually large and slow oscillations. These changes, in particular the frequency of the oscillations and the magnitude of the [Ca(2+)] rise, were similar in wild-type and mGPDH(-/-) mice. Glucose-induced electrical activity (oscillations of the membrane potential with bursts of action potentials) was not altered in mGPDH(-/-) beta cells. In single islets from either type of mouse, insulin secretion strictly followed the changes in [Ca(2+)](i) during imposed oscillations induced by pulses of high K(+) or glucose and during the biphasic elevation induced by sustained stimulation with glucose. An imposed and controlled rise of [Ca(2+)](i) in beta cells similarly increased NAD(P)H fluorescence in control and mGDPH(-/-) islets. Inhibition of the malate-aspartate NADH shuttle with aminooxyacetate only had minor effects in control islets but abolished the electrical, [Ca(2+)](i) and secretory responses in mGPDH(-/-) islets. The results show that the two distinct NADH shuttles play an important but at least partially redundant role in glucose-induced insulin secretion. The oscillatory behavior of beta cells does not depend on the functioning of mGPDH and on metabolic oscillations that would be generated by cyclic activation of this enzyme by Ca(2+).


Subject(s)
Glycerolphosphate Dehydrogenase/genetics , Islets of Langerhans/enzymology , Aminooxyacetic Acid/pharmacology , Animals , Aspartic Acid/metabolism , Calcium/metabolism , Cells, Cultured , Cytoplasm/metabolism , Electrophysiology , Enzyme Inhibitors/pharmacology , Female , Glucose/pharmacology , Glycerolphosphate Dehydrogenase/physiology , Insulin/metabolism , Insulin Secretion , Malates/metabolism , Mice , Mice, Knockout , Mitochondria/enzymology , Potassium/metabolism , Time Factors
4.
J Physiol ; 520 Pt 3: 839-49, 1999 Nov 01.
Article in English | MEDLINE | ID: mdl-10545148

ABSTRACT

1. The cytoplasmic Ca2+ concentration ([Ca2+]i) was measured in single cells and cell clusters of different sizes prepared from mouse pancreatic islets. 2. During stimulation with 15 mM glucose, 20 % of isolated cells were inert, whereas 80 % showed [Ca2+]i oscillations of variable amplitude, duration and frequency. Spectral analysis identified a major frequency of 0.14 min-1 and a less prominent one of 0.27 min-1. 3. In contrast, practically all clusters (2-50 cells) responded to glucose, and no inert cells were identified within the clusters. As compared to single cells, mean [Ca2+]i was more elevated, [Ca2+]i oscillations were more regular and their major frequency was slightly higher (but reached a plateau at approximately 0.25 min-1). In some cells and clusters, faster oscillations occurred on top of the slow ones, between them or randomly. 4. Image analysis revealed that the regular [Ca2+]i oscillations were well synchronized between all cells of the clusters. Even when the Ca2+ response was irregular, slow and fast [Ca2+]i oscillations induced by glucose were also synchronous in all cells. 5. In contrast, [Ca2+]i oscillations resulting from mobilization of intracellular Ca2+ by acetylcholine were restricted to certain cells only and were not synchronized. 6. Heptanol and 18alpha-glycyrrhetinic acid, two agents widely used to block gap junctions, altered glucose-induced Ca2+ oscillations, but control experiments showed that they also exerted effects other than a selective uncoupling of the cells. 7. The results support theoretical models predicting an increased regularity of glucose-dependent oscillatory events in clusters as compared to isolated islet cells, but contradict the proposal that the frequency of the oscillations increases with the number of coupled cells. Islet cell clusters function better as electrical than biochemical syncytia. This may explain the co-ordination of [Ca2+]i oscillations driven by depolarization-dependent Ca2+ influx during glucose stimulation.


Subject(s)
Calcium/metabolism , Islets of Langerhans/metabolism , Animals , Cell Aggregation , Cell Count , Cells, Cultured , Female , Intracellular Membranes/metabolism , Islets of Langerhans/cytology , Mice , Mice, Inbred Strains , Oscillometry , Osmolar Concentration , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...