Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 231(Pt 1): 116117, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37178748

ABSTRACT

Pharmaceuticals, such as glucocorticoids and antibiotics, are inadequately removed from wastewater and may cause unwanted toxic effects in the receiving environment. This study aimed to identify contaminants of emerging concern in wastewater effluent with antimicrobial or glucocorticoid activity by applying effect-directed analysis (EDA). Effluent samples from six wastewater treatment plants (WWTPs) in the Netherlands were collected and analyzed with unfractionated and fractionated bioassay testing. Per sample, 80 fractions were collected and in parallel high-resolution mass spectrometry (HRMS) data were recorded for suspect and nontarget screening. The antimicrobial activity of the effluents was determined with an antibiotics assay and ranged from 298 to 711 ng azithromycin equivalents·L-1. Macrolide antibiotics were identified in each effluent and found to significantly contribute to the antimicrobial activity of each sample. Agonistic glucocorticoid activity determined with the GR-CALUX assay ranged from 98.1 to 286 ng dexamethasone equivalents·L-1. Bioassay testing of several tentatively identified compounds to confirm their activity revealed inactivity in the assay or the incorrect identification of a feature. Effluent concentrations of glucocorticoid active compounds were estimated from the fractionated GR-CALUX bioassay response. Subsequently, the biological and chemical detection limits were compared and a sensitivity gap between the two monitoring approaches was identified. Overall, these results emphasize that combining sensitive effect-based testing with chemical analysis can more accurately reflect environmental exposure and risk than chemical analysis alone.


Subject(s)
Water Pollutants, Chemical , Water Purification , Wastewater/toxicity , Glucocorticoids , Mass Spectrometry , Anti-Bacterial Agents/analysis , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Environmental Monitoring
2.
Chemosphere ; 320: 138093, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36758810

ABSTRACT

This study aimed to identify antimicrobial contaminants in the aquatic environment with effect-directed analysis. Wastewater influent, effluent, and surface water (up- and downstream of the discharge location) were sampled at two study sites. The samples were enriched, subjected to high-resolution fractionation, and the resulting 80 fractions were tested in an antibiotics bioassay. The resulting bioactive fractions guided the suspect and nontargeted identification strategy in the high-resolution mass spectrometry data that was recorded in parallel. Chemical features were annotated with reference databases, assessed on annotation quality, and assigned identification confidence levels. To identify antibiotic metabolites, Phase I metabolites were predicted in silico for over 500 antibiotics and included as a suspect list. Predicted retention times and fragmentation patterns reduced the number of annotations to consider for confirmation testing. Overall, the bioactivity of three fractions could be explained by the identified antibiotics (clarithromycin and azithromycin) and an antibiotic metabolite (14-OH(R) clarithromycin), explaining 78% of the bioactivity measured at one study site. The applied identification strategy successfully identified antibiotic metabolites in the aquatic environment, emphasizing the need to include the toxic effects of bioactive metabolites in environmental risk assessments.


Subject(s)
Anti-Infective Agents , Water Pollutants, Chemical , Wastewater , Clarithromycin , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Anti-Bacterial Agents/analysis , Anti-Infective Agents/analysis
3.
Environ Sci Eur ; 34(1): 104, 2022.
Article in English | MEDLINE | ID: mdl-36284750

ABSTRACT

Background: The NORMAN Association (https://www.norman-network.com/) initiated the NORMAN Suspect List Exchange (NORMAN-SLE; https://www.norman-network.com/nds/SLE/) in 2015, following the NORMAN collaborative trial on non-target screening of environmental water samples by mass spectrometry. Since then, this exchange of information on chemicals that are expected to occur in the environment, along with the accompanying expert knowledge and references, has become a valuable knowledge base for "suspect screening" lists. The NORMAN-SLE now serves as a FAIR (Findable, Accessible, Interoperable, Reusable) chemical information resource worldwide. Results: The NORMAN-SLE contains 99 separate suspect list collections (as of May 2022) from over 70 contributors around the world, totalling over 100,000 unique substances. The substance classes include per- and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides, natural toxins, high production volume substances covered under the European REACH regulation (EC: 1272/2008), priority contaminants of emerging concern (CECs) and regulatory lists from NORMAN partners. Several lists focus on transformation products (TPs) and complex features detected in the environment with various levels of provenance and structural information. Each list is available for separate download. The merged, curated collection is also available as the NORMAN Substance Database (NORMAN SusDat). Both the NORMAN-SLE and NORMAN SusDat are integrated within the NORMAN Database System (NDS). The individual NORMAN-SLE lists receive digital object identifiers (DOIs) and traceable versioning via a Zenodo community (https://zenodo.org/communities/norman-sle), with a total of > 40,000 unique views, > 50,000 unique downloads and 40 citations (May 2022). NORMAN-SLE content is progressively integrated into large open chemical databases such as PubChem (https://pubchem.ncbi.nlm.nih.gov/) and the US EPA's CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard/), enabling further access to these lists, along with the additional functionality and calculated properties these resources offer. PubChem has also integrated significant annotation content from the NORMAN-SLE, including a classification browser (https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101). Conclusions: The NORMAN-SLE offers a specialized service for hosting suspect screening lists of relevance for the environmental community in an open, FAIR manner that allows integration with other major chemical resources. These efforts foster the exchange of information between scientists and regulators, supporting the paradigm shift to the "one substance, one assessment" approach. New submissions are welcome via the contacts provided on the NORMAN-SLE website (https://www.norman-network.com/nds/SLE/). Supplementary Information: The online version contains supplementary material available at 10.1186/s12302-022-00680-6.

4.
Environ Sci Technol ; 56(3): 1639-1651, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35050604

ABSTRACT

Effect-directed analysis (EDA) aims at the detection of bioactive chemicals of emerging concern (CECs) by combining toxicity testing and high-resolution mass spectrometry (HRMS). However, consolidation of toxicological and chemical analysis techniques to identify bioactive CECs remains challenging and laborious. In this study, we incorporate state-of-the-art identification approaches in EDA and propose a robust workflow for the high-throughput screening of CECs in environmental and human samples. Three different sample types were extracted and chemically analyzed using a single high-performance liquid chromatography HRMS method. Chemical features were annotated by suspect screening with several reference databases. Annotation quality was assessed using an automated scoring system. In parallel, the extracts were fractionated into 80 micro-fractions each covering a couple of seconds from the chromatogram run and tested for bioactivity in two bioassays. The EDA workflow prioritized and identified chemical features related to bioactive fractions with varying levels of confidence. Confidence levels were improved with the in silico software tools MetFrag and the retention time indices platform. The toxicological and chemical data quality was comparable between the use of single and multiple technical replicates. The proposed workflow incorporating EDA for feature prioritization in suspect and nontarget screening paves the way for the routine identification of CECs in a high-throughput manner.


Subject(s)
Biological Assay , Toxicity Tests , Gas Chromatography-Mass Spectrometry , Humans , Mass Spectrometry , Workflow
5.
Sci Data ; 8(1): 223, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34429429

ABSTRACT

Non-target analysis (NTA) employing high-resolution mass spectrometry is a commonly applied approach for the detection of novel chemicals of emerging concern in complex environmental samples. NTA typically results in large and information-rich datasets that require computer aided (ideally automated) strategies for their processing and interpretation. Such strategies do however raise the challenge of reproducibility between and within different processing workflows. An effective strategy to mitigate such problems is the implementation of inter-laboratory studies (ILS) with the aim to evaluate different workflows and agree on harmonized/standardized quality control procedures. Here we present the data generated during such an ILS. This study was organized through the Norman Network and included 21 participants from 11 countries. A set of samples based on the passive sampling of drinking water pre and post treatment was shipped to all the participating laboratories for analysis, using one pre-defined method and one locally (i.e. in-house) developed method. The data generated represents a valuable resource (i.e. benchmark) for future developments of algorithms and workflows for NTA experiments.


Subject(s)
Benchmarking , Drinking Water/analysis , Mass Spectrometry , Algorithms , Laboratories , Workflow
6.
Sci Total Environ ; 729: 139028, 2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32498177

ABSTRACT

The goal of the present study was to select a Gram-positive (Gram+) and Gram-negative (Gram-) strain to measure antimicrobial activity in environmental samples, allowing high-throughput environmental screening. The sensitivity of eight pre-selected bacterial strains were tested to a training set of ten antibiotics, i.e. three Gram+ Bacillus subtilis strains with different read-outs, and five Gram- strains. The latter group consisted of a bioluminescent Allivibrio fischeri strain and four Escherichia coli strains, i.e. a wild type (WT) and three strains with a modified cell envelope to increase their sensitivity. The WT B. subtilis and an E. coli strain newly developed in this study, were most sensitive to the training set. This E. coli strain carries an open variant of an outer membrane protein combined with an inactivated multidrug efflux transport system. The assay conditions of these two strains were optimized and validated by exposure to a validation set of thirteen antibiotics with clinical and environmental relevance. The assay sensitivity ranged from the ng/mL to µg/mL range. The applicability of the assays for toxicological characterization of aquatic environmental samples was demonstrated for hospital effluent extract. A future application includes effect-directed analysis to identify yet unknown antibiotic contaminants or their transformation products.


Subject(s)
Biological Assay , Anti-Bacterial Agents , Bacillus subtilis , Escherichia coli , High-Throughput Screening Assays , Microbial Sensitivity Tests
7.
Anal Bioanal Chem ; 408(11): 2945-53, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26758596

ABSTRACT

Plastics are complex mixtures consisting of a polymer and additives with different physico-chemical properties. We developed a broad screening method to elucidate the nature of compounds present in plastics used in electrical/electronic equipment commonly found at homes (e.g., electrical adaptors, computer casings, heaters). The analysis was done by (a) solvent extraction followed by liquid chromatography coupled to high accuracy/resolution time-of-flight mass spectrometry (TOFMS) with different ionization sources or (b) direct analysis of the solid by ambient mass spectrometry high accuracy/resolution TOFMS. The different ionization methods showed different selectivity and sensitivity for the different compound classes and were complementary. A variety of antioxidants, phthalates, UV filters, and flame retardants were found in most samples. Furthermore, some recently reported impurities or degradation products derived from flame retardants were identified, such as hydroxylated triphenyl phosphate and tetrabromobisphenol A monoglycidyl ether.


Subject(s)
Chromatography, Liquid/methods , Plastics/chemistry , Spectrometry, Mass, Electrospray Ionization/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...