Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep Methods ; 4(5): 100773, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38744288

ABSTRACT

Predicting cellular responses to perturbations requires interpretable insights into molecular regulatory dynamics to perform reliable cell fate control, despite the confounding non-linearity of the underlying interactions. There is a growing interest in developing machine learning-based perturbation response prediction models to handle the non-linearity of perturbation data, but their interpretation in terms of molecular regulatory dynamics remains a challenge. Alternatively, for meaningful biological interpretation, logical network models such as Boolean networks are widely used in systems biology to represent intracellular molecular regulation. However, determining the appropriate regulatory logic of large-scale networks remains an obstacle due to the high-dimensional and discontinuous search space. To tackle these challenges, we present a scalable derivative-free optimizer trained by meta-reinforcement learning for Boolean network models. The logical network model optimized by the trained optimizer successfully predicts anti-cancer drug responses of cancer cell lines, while simultaneously providing insight into their underlying molecular regulatory mechanisms.


Subject(s)
Machine Learning , Humans , Algorithms , Cell Line, Tumor , Models, Biological , Computer Simulation , Systems Biology
2.
Adv Sci (Weinh) ; 10(24): e2207322, 2023 08.
Article in English | MEDLINE | ID: mdl-37269056

ABSTRACT

Accumulated genetic alterations in cancer cells distort cellular stimulus-response (or input-output) relationships, resulting in uncontrolled proliferation. However, the complex molecular interaction network within a cell implicates a possibility of restoring such distorted input-output relationships by rewiring the signal flow through controlling hidden molecular switches. Here, a system framework of analyzing cellular input-output relationships in consideration of various genetic alterations and identifying possible molecular switches that can normalize the distorted relationships based on Boolean network modeling and dynamics analysis is presented. Such reversion is demonstrated by the analysis of a number of cancer molecular networks together with a focused case study on bladder cancer with in vitro experiments and patient survival data analysis. The origin of reversibility from an evolutionary point of view based on the redundancy and robustness intrinsically embedded in complex molecular regulatory networks is further discussed.


Subject(s)
Gene Regulatory Networks , Neoplasms , Humans , Neoplasms/drug therapy
3.
Adv Mater ; 32(35): e1906783, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32253807

ABSTRACT

Many clinical trials for cancer precision medicine have yielded unsatisfactory results due to challenges such as drug resistance and low efficacy. Drug resistance is often caused by the complex compensatory regulation within the biomolecular network in a cancer cell. Recently, systems biological studies have modeled and simulated such complex networks to unravel the hidden mechanisms of drug resistance and identify promising new drug targets or combinatorial or sequential treatments for overcoming resistance to anticancer drugs. However, many of the identified targets or treatments present major difficulties for drug development and clinical application. Nanocarriers represent a path forward for developing therapies with these "undruggable" targets or those that require precise combinatorial or sequential application, for which conventional drug delivery mechanisms are unsuitable. Conversely, a challenge in nanomedicine has been low efficacy due to heterogeneity of cancers in patients. This problem can also be resolved through systems biological approaches by identifying personalized targets for individual patients or promoting the drug responses. Therefore, integration of systems biology and nanomaterial engineering will enable the clinical application of cancer precision medicine to overcome both drug resistance of conventional treatments and low efficacy of nanomedicine due to patient heterogeneity.


Subject(s)
Engineering , Nanomedicine/methods , Neoplasms , Precision Medicine/methods , Systems Biology , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Systems Integration
4.
Sci Rep ; 8(1): 12077, 2018 08 13.
Article in English | MEDLINE | ID: mdl-30104572

ABSTRACT

Cell state transition is at the core of biological processes in metazoan, which includes cell differentiation, epithelial-to-mesenchymal transition (EMT) and cell reprogramming. In these cases, it is important to understand the molecular mechanism of cellular stability and how the transitions happen between different cell states, which is controlled by a gene regulatory network (GRN) hard-wired in the genome. Here we use Boolean modeling of GRN to study the cell state transition of EMT and systematically compare four available methods to calculate the cellular stability of three cell states in EMT in both normal and genetically mutated cases. The results produced from four methods generally agree but do not totally agree with each other. We show that distribution of one-degree neighborhood of cell states, which are the nearest states by Hamming distance, causes the difference among the methods. From that, we propose a new method based on one-degree neighborhood, which is the simplest one and agrees with other methods to estimate the cellular stability in all scenarios of our EMT model. This new method will help the researchers in the field of cell differentiation and cell reprogramming to calculate cellular stability using Boolean model, and then rationally design their experimental protocols to manipulate the cell state transition.


Subject(s)
Gene Regulatory Networks , Models, Genetic , Animals , Cell Differentiation/genetics , Cellular Reprogramming/genetics , Epithelial-Mesenchymal Transition/genetics
5.
BMC Syst Biol ; 12(1): 49, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29622038

ABSTRACT

BACKGROUND: Controlling complex molecular regulatory networks is getting a growing attention as it can provide a systematic way of driving any cellular state to a desired cell phenotypic state. A number of recent studies suggested various control methods, but there is still deficiency in finding out practically useful control targets that ensure convergence of any initial network state to one of attractor states corresponding to a desired cell phenotype. RESULTS: To find out practically useful control targets, we introduce a new concept of phenotype control kernel (PCK) for a Boolean network, defined as the collection of all minimal sets of control nodes having their fixed state values that can generate all possible control sets which eventually drive any initial state to one of attractor states corresponding to a particular cell phenotype of interest. We also present a detailed method with which we can identify PCK in a systematic way based on the layered network and converging tree of a given network. We identify all candidates for control nodes from the layered network and then hierarchically search for all possible minimal sets by using the converging tree. We show the usefulness of PCK by applying it to cell proliferation and apoptosis signaling networks and comparing the results with other control methods. PCK is the unique control method for Boolean network models that can be used to identify all possible minimal sets of control nodes. Interestingly, many of the minimal sets have only one or two control nodes. CONCLUSIONS: Based on the new concept of PCK, we can identify all possible minimal sets of control nodes that can drive any molecular network state to one of multiple attractor states representing a same desired cell phenotype.


Subject(s)
Models, Biological , Phenotype , Cell Line, Tumor , Gene Regulatory Networks , Humans , MAP Kinase Signaling System/genetics
6.
Wiley Interdiscip Rev Syst Biol Med ; 8(5): 366-77, 2016 09.
Article in English | MEDLINE | ID: mdl-27327189

ABSTRACT

Most biological processes have been considered to be irreversible for a long time, but some recent studies have shown the possibility of their reversion at a cellular level. How can we then understand the reversion of such biological processes? We introduce a unified conceptual framework based on the attractor landscape, a molecular phase portrait describing the dynamics of a molecular regulatory network, and the phenotype landscape, a map of phenotypes determined by the steady states of particular output molecules in the attractor landscape. In this framework, irreversible processes involve reshaping of the phenotype landscape, and the landscape reshaping causes the irreversibility of processes. We suggest reverse control by network rewiring which changes network dynamics with constant perturbation, resulting in the restoration of the original phenotype landscape. The proposed framework provides a conceptual basis for the reverse control of irreversible biological processes through network rewiring. WIREs Syst Biol Med 2016, 8:366-377. doi: 10.1002/wsbm.1346 For further resources related to this article, please visit the WIREs website.


Subject(s)
Biological Phenomena , Models, Biological , Animals , Carcinogenesis/genetics , Cell Differentiation , Cellular Senescence , Gene Regulatory Networks , Humans
SELECTION OF CITATIONS
SEARCH DETAIL