Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Br J Cancer ; 130(5): 728-740, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38200234

ABSTRACT

BACKGROUND: This study aimed to investigate clinicopathological and molecular tumour features associated with intratumoral pks+ Escherichia coli (pks+E.coli+), pks+E.coli- (non-E.coli bacteria harbouring the pks island), Enterotoxigenic Bacteroides fragilis (ETBF) and Fusobacterium nucleatum (F. nucleatum). METHODS: We screened 1697 tumour-derived DNA samples from the Australasian Colorectal Cancer Family Registry, Melbourne Collaborative Cohort Study and the ANGELS study using targeted PCR. RESULTS: Pks+E.coli+ was associated with male sex (P < 0.01) and APC:c.835-8 A > G somatic mutation (P = 0.03). The association between pks+E.coli+ and APC:c.835-8 A > G was specific to early-onset CRCs (diagnosed<45years, P = 0.02). The APC:c.835-A > G was not associated with pks+E.coli- (P = 0.36). F. nucleatum was associated with DNA mismatch repair deficiency (MMRd), BRAF:c.1799T>A p.V600E mutation, CpG island methylator phenotype, proximal tumour location, and high levels of tumour infiltrating lymphocytes (Ps < 0.01). In the stratified analysis by MMRd subgroups, F. nucleatum was associated with Lynch syndrome, MLH1 methylated and double MMR somatic mutated MMRd subgroups (Ps < 0.01). CONCLUSION: Intratumoral pks+E.coli+ but not pks+E.coli- are associated with CRCs harbouring the APC:c.835-8 A > G somatic mutation, suggesting that this mutation is specifically related to DNA damage from colibactin-producing E.coli exposures. F. nucleatum was associated with both hereditary and sporadic MMRd subtypes, suggesting the MMRd tumour microenvironment is important for F. nucleatum colonisation irrespective of its cause.


Subject(s)
Brain Neoplasms , Colorectal Neoplasms , Fusobacterium nucleatum , Neoplastic Syndromes, Hereditary , Humans , Male , Fusobacterium nucleatum/genetics , Bacteroides fragilis/genetics , Escherichia coli/genetics , Cohort Studies , Colorectal Neoplasms/pathology , DNA Damage , DNA , Tumor Microenvironment
2.
medRxiv ; 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37090539

ABSTRACT

Background and Aims: The microbiome has long been suspected of a role in colorectal cancer (CRC) tumorigenesis. The mutational signature SBS88 mechanistically links CRC development with the strain of Escherichia coli harboring the pks island that produces the genotoxin colibactin, but the genomic, pathological and survival characteristics associated with SBS88-positive tumors are unknown. Methods: SBS88-positive CRCs were identified from targeted sequencing data from 5,292 CRCs from 17 studies and tested for their association with clinico-pathological features, oncogenic pathways, genomic characteristics and survival. Results: In total, 7.5% (398/5,292) of the CRCs were SBS88-positive, of which 98.7% (392/398) were microsatellite stable/microsatellite instability low (MSS/MSI-L), compared with 80% (3916/4894) of SBS88 negative tumors (p=1.5x10-28). Analysis of MSS/MSI-L CRCs demonstrated that SBS88 positive CRCs were associated with the distal colon (OR=1.84, 95% CI=1.40-2.42, p=1x10-5) and rectum (OR=1.90, 95% CI=1.44-2.51, p=6x10-6) tumor sites compared with the proximal colon. The top seven recurrent somatic mutations associated with SBS88-positive CRCs demonstrated mutational contexts associated with colibactin-induced DNA damage, the strongest of which was the APC:c.835-8A>G mutation (OR=65.5, 95%CI=39.0-110.0, p=3x10-80). Large copy number alterations (CNAs) including CNA loss on 14q and gains on 13q, 16q and 20p were significantly enriched in SBS88-positive CRCs. SBS88-positive CRCs were associated with better CRC-specific survival (p=0.007; hazard ratio of 0.69, 95% CI=0.52-0.90) when stratified by age, sex, study, and by stage. Conclusion: SBS88-positivity, a biomarker of colibactin-induced DNA damage, can identify a novel subtype of CRC characterized by recurrent somatic mutations, copy number alterations and better survival. These findings provide new insights for treatment and prevention strategies for this subtype of CRC.

3.
Fam Cancer ; 23(1): 9-21, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38063999

ABSTRACT

Genetic susceptibility to familial colorectal cancer (CRC), including for individuals classified as Familial Colorectal Cancer Type X (FCCTX), remains poorly understood. We describe a multi-generation CRC-affected family segregating pathogenic variants in both BRCA1, a gene associated with breast and ovarian cancer and RNF43, a gene associated with Serrated Polyposis Syndrome (SPS). A single family out of 105 families meeting the criteria for FCCTX (Amsterdam I family history criteria with mismatch repair (MMR)-proficient CRCs) recruited to the Australasian Colorectal Cancer Family Registry (ACCFR; 1998-2008) that underwent whole exome sequencing (WES), was selected for further testing. CRC and polyp tissue from four carriers were molecularly characterized including a single CRC that underwent WES to determine tumor mutational signatures and loss of heterozygosity (LOH) events. Ten carriers of a germline pathogenic variant BRCA1:c.2681_2682delAA p.Lys894ThrfsTer8 and eight carriers of a germline pathogenic variant RNF43:c.988 C > T p.Arg330Ter were identified in this family. Seven members carried both variants, four of which developed CRC. A single carrier of the RNF43 variant met the 2019 World Health Organization (WHO2019) criteria for SPS, developing a BRAF p.V600 wildtype CRC. Loss of the wildtype allele for both BRCA1 and RNF43 variants was observed in three CRC tumors while a LOH event across chromosome 17q encompassing both genes was observed in a CRC. Tumor mutational signature analysis identified the homologous recombination deficiency (HRD)-associated COSMIC signatures SBS3 and ID6 in a CRC for a carrier of both variants. Our findings show digenic inheritance of pathogenic variants in BRCA1 and RNF43 segregating with CRC in a FCCTX family. LOH and evidence of BRCA1-associated HRD supports the importance of both these tumor suppressor genes in CRC tumorigenesis.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , Colorectal Neoplasms , Humans , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Mutation , Germ-Line Mutation , Genetic Predisposition to Disease , BRCA1 Protein/genetics , Ubiquitin-Protein Ligases/genetics
4.
Cancers (Basel) ; 15(20)2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37894291

ABSTRACT

Germline pathogenic variants in the DNA mismatch repair (MMR) genes (Lynch syndrome) predispose to colorectal (CRC) and endometrial (EC) cancer. Lynch syndrome specific tumor features were evaluated for their ability to support the ACMG/InSiGHT framework in classifying variants of uncertain clinical significance (VUS) in the MMR genes. Twenty-eight CRC or EC tumors from 25 VUS carriers (6xMLH1, 9xMSH2, 6xMSH6, 4xPMS2), underwent targeted tumor sequencing for the presence of microsatellite instability/MMR-deficiency (MSI-H/dMMR) status and identification of a somatic MMR mutation (second hit). Immunohistochemical testing for the presence of dMMR crypts/glands in normal tissue was also performed. The ACMG/InSiGHT framework reclassified 7/25 (28%) VUS to likely pathogenic (LP), three (12%) to benign/likely benign, and 15 (60%) VUS remained unchanged. For the seven re-classified LP variants comprising nine tumors, tumor sequencing confirmed MSI-H/dMMR (8/9, 88.9%) and a second hit (7/9, 77.8%). Of these LP reclassified variants where normal tissue was available, the presence of a dMMR crypt/gland was found in 2/4 (50%). Furthermore, a dMMR endometrial gland in a carrier of an MSH2 exon 1-6 duplication provides further support for an upgrade of this VUS to LP. Our study confirmed that identifying these Lynch syndrome features can improve MMR variant classification, enabling optimal clinical care.

5.
Clin Epigenetics ; 15(1): 95, 2023 06 03.
Article in English | MEDLINE | ID: mdl-37270516

ABSTRACT

BACKGROUND: MLH1 epimutation is characterised by constitutional monoallelic MLH1 promoter hypermethylation, which can cause colorectal cancer (CRC). Tumour molecular profiles of MLH1 epimutation CRCs were used to classify germline MLH1 promoter variants of uncertain significance and MLH1 methylated early-onset CRCs (EOCRCs). Genome-wide DNA methylation and somatic mutational profiles of tumours from two germline MLH1: c.-11C > T and one MLH1: c.-[28A > G; 7C > T] carriers and three MLH1 methylated EOCRCs (< 45 years) were compared with 38 reference CRCs. Methylation-sensitive droplet digital PCR (ddPCR) was used to detect mosaic MLH1 methylation in blood, normal mucosa and buccal DNA. RESULTS: Genome-wide methylation-based Consensus Clustering identified four clusters where the tumour methylation profiles of germline MLH1: c.-11C > T carriers and MLH1 methylated EOCRCs clustered with the constitutional MLH1 epimutation CRCs but not with the sporadic MLH1 methylated CRCs. Furthermore, monoallelic MLH1 methylation and APC promoter hypermethylation in tumour were observed in both MLH1 epimutation and germline MLH1: c.-11C > T carriers and MLH1 methylated EOCRCs. Mosaic constitutional MLH1 methylation in MLH1: c.-11C > T carriers and 1 of 3 MLH1 methylated EOCRCs was identified by methylation-sensitive ddPCR. CONCLUSIONS: Mosaic MLH1 epimutation underlies the CRC aetiology in MLH1: c.-11C > T germline carriers and a subset of MLH1 methylated EOCRCs. Tumour profiling and ultra-sensitive ddPCR methylation testing can be used to identify mosaic MLH1 epimutation carriers.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , Colorectal Neoplasms , Humans , DNA Methylation , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Promoter Regions, Genetic , Polymerase Chain Reaction , DNA , Colorectal Neoplasms/genetics , MutL Protein Homolog 1/genetics
6.
Fam Cancer ; 22(4): 423-428, 2023 10.
Article in English | MEDLINE | ID: mdl-37318702

ABSTRACT

Germline pathogenic variants in the DNA mismatch repair (MMR) genes (Lynch syndrome) predispose to colorectal (CRC) and endometrial (EC) cancer. However, mosaic variants in the MMR genes have been rarely described. We identified a likely de novo mosaic MSH6:c.1135_1139del p.Arg379* pathogenic variant in a patient diagnosed with suspected Lynch syndrome/Lynch-like syndrome. The patient developed MSH6-deficient EC and CRC at 54 and 58 years of age, respectively, without a detectable germline MMR pathogenic variant. Multigene panel sequencing of tumor and blood-derived DNA identified an MSH6 somatic mutation (MSH6:c.1135_1139del p.Arg379*) common to both the EC and CRC, raising suspicion of mosaicism. A droplet digital polymerase chain reaction (ddPCR) assay detected the MSH6 variant at 5.34% frequency in normal colonic tissue, 3.49% in saliva and 1.64% in blood DNA, demonstrating the presence of the MSH6 variant in all three germ layers. This study highlights the utility of tumor sequencing to guide sensitive ddPCR testing to detect low-level mosaicism in the MMR genes. Further investigation of the prevalence of MMR mosaicism is needed to inform routine diagnostic approaches and genetic counselling.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , Endometrial Neoplasms , Female , Humans , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , Germ-Line Mutation , Endometrial Neoplasms/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , DNA , DNA Mismatch Repair , MutL Protein Homolog 1/genetics , Microsatellite Instability
8.
J Transl Med ; 21(1): 282, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37101184

ABSTRACT

Routine screening of tumors for DNA mismatch repair (MMR) deficiency (dMMR) in colorectal (CRC), endometrial (EC) and sebaceous skin (SST) tumors leads to a significant proportion of unresolved cases classified as suspected Lynch syndrome (SLS). SLS cases (n = 135) were recruited from Family Cancer Clinics across Australia and New Zealand. Targeted panel sequencing was performed on tumor (n = 137; 80×CRCs, 33×ECs and 24xSSTs) and matched blood-derived DNA to assess for microsatellite instability status, tumor mutation burden, COSMIC tumor mutational signatures and to identify germline and somatic MMR gene variants. MMR immunohistochemistry (IHC) and MLH1 promoter methylation were repeated. In total, 86.9% of the 137 SLS tumors could be resolved into established subtypes. For 22.6% of these resolved SLS cases, primary MLH1 epimutations (2.2%) as well as previously undetected germline MMR pathogenic variants (1.5%), tumor MLH1 methylation (13.1%) or false positive dMMR IHC (5.8%) results were identified. Double somatic MMR gene mutations were the major cause of dMMR identified across each tumor type (73.9% of resolved cases, 64.2% overall, 70% of CRC, 45.5% of ECs and 70.8% of SSTs). The unresolved SLS tumors (13.1%) comprised tumors with only a single somatic (7.3%) or no somatic (5.8%) MMR gene mutations. A tumor-focused testing approach reclassified 86.9% of SLS into Lynch syndrome, sporadic dMMR or MMR-proficient cases. These findings support the incorporation of tumor sequencing and alternate MLH1 methylation assays into clinical diagnostics to reduce the number of SLS patients and provide more appropriate surveillance and screening recommendations.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , Colorectal Neoplasms , Neoplastic Syndromes, Hereditary , Humans , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , DNA Mismatch Repair/genetics , Colorectal Neoplasms/genetics , Neoplastic Syndromes, Hereditary/genetics , MutL Protein Homolog 1/genetics , DNA Methylation/genetics , Microsatellite Instability
9.
medRxiv ; 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36909643

ABSTRACT

Routine screening of tumors for DNA mismatch repair (MMR) deficiency (dMMR) in colorectal (CRC), endometrial (EC) and sebaceous skin (SST) tumors leads to a significant proportion of unresolved cases classified as suspected Lynch syndrome (SLS). SLS cases (n=135) were recruited from Family Cancer Clinics across Australia and New Zealand. Targeted panel sequencing was performed on tumor (n=137; 80xCRCs, 33xECs and 24xSSTs) and matched blood-derived DNA to assess for microsatellite instability status, tumor mutation burden, COSMIC tumor mutational signatures and to identify germline and somatic MMR gene variants. MMR immunohistochemistry (IHC) and MLH1 promoter methylation were repeated. In total, 86.9% of the 137 SLS tumors could be resolved into established subtypes. For 22.6% of these resolved SLS cases, primary MLH1 epimutations (2.2%) as well as previously undetected germline MMR pathogenic variants (1.5%), tumor MLH1 methylation (13.1%) or false positive dMMR IHC (5.8%) results were identified. Double somatic MMR gene mutations were the major cause of dMMR identified across each tumor type (73.9% of resolved cases, 64.2% overall, 70% of CRC, 45.5% of ECs and 70.8% of SSTs). The unresolved SLS tumors (13.1%) comprised tumors with only a single somatic (7.3%) or no somatic (5.8%) MMR gene mutations. A tumor-focused testing approach reclassified 86.9% of SLS into Lynch syndrome, sporadic dMMR or MMR-proficient cases. These findings support the incorporation of tumor sequencing and alternate MLH1 methylation assays into clinical diagnostics to reduce the number of SLS patients and provide more appropriate surveillance and screening recommendations.

10.
Int J Cancer ; 153(3): 489-498, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-36919377

ABSTRACT

Methylation marks of exposure to health risk factors may be useful markers of cancer risk as they might better capture current and past exposures than questionnaires, and reflect different individual responses to exposure. We used data from seven case-control studies nested within the Melbourne Collaborative Cohort Study of blood DNA methylation and risk of colorectal, gastric, kidney, lung, prostate and urothelial cancer, and B-cell lymphoma (N cases = 3123). Methylation scores (MS) for smoking, body mass index (BMI), and alcohol consumption were calculated based on published data as weighted averages of methylation values. Rate ratios (RR) and 95% confidence intervals for association with cancer risk were estimated using conditional logistic regression and expressed per SD increase of the MS, with and without adjustment for health-related confounders. The contribution of MS to discriminate cases from controls was evaluated using the area under the curve (AUC). After confounder adjustment, we observed: large associations (RR = 1.5-1.7) with lung cancer risk for smoking MS; moderate associations (RR = 1.2-1.3) with urothelial cancer risk for smoking MS and with mature B-cell neoplasm risk for BMI and alcohol MS; moderate to small associations (RR = 1.1-1.2) for BMI and alcohol MS with several cancer types and cancer overall. Generally small AUC increases were observed after inclusion of several MS in the same model (colorectal, gastric, kidney, urothelial cancers: +3%; lung cancer: +7%; B-cell neoplasms: +8%). Methylation scores for smoking, BMI and alcohol consumption show independent associations with cancer risk, and may provide some improvements in risk prediction.


Subject(s)
Colorectal Neoplasms , Lung Neoplasms , Male , Humans , Body Mass Index , Cohort Studies , Smoking/adverse effects , Smoking/genetics , Risk Factors , Alcohol Drinking/adverse effects , DNA Methylation , Lung Neoplasms/etiology , Lung Neoplasms/genetics , Colorectal Neoplasms/genetics
11.
J Mol Diagn ; 25(2): 94-109, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36396080

ABSTRACT

Identifying tumor DNA mismatch repair deficiency (dMMR) is important for precision medicine. Tumor features, individually and in combination, derived from whole-exome sequenced (WES) colorectal cancers (CRCs) and panel-sequenced CRCs, endometrial cancers (ECs), and sebaceous skin tumors (SSTs) were assessed for their accuracy in detecting dMMR. CRCs (n = 300) with WES, where mismatch repair status was determined by immunohistochemistry, were assessed for microsatellite instability (MSMuTect, MANTIS, MSIseq, and MSISensor), Catalogue of Somatic Mutations in Cancer tumor mutational signatures, and somatic mutation counts. A 10-fold cross-validation approach (100 repeats) evaluated the dMMR prediction accuracy for i) individual features, ii) Lasso statistical model, and iii) an additive feature combination approach. Panel-sequenced tumors (29 CRCs, 22 ECs, and 20 SSTs) were assessed for the top performing dMMR predicting features/models using these three approaches. For WES CRCs, 10 features provided >80% dMMR prediction accuracy, with MSMuTect, MSIseq, and MANTIS achieving ≥99% accuracy. The Lasso model achieved 98.3% accuracy. The additive feature approach, with three or more of six of MSMuTect, MANTIS, MSIseq, MSISensor, insertion-deletion count, or tumor mutational signature small insertion/deletion 2 + small insertion/deletion 7 achieved 99.7% accuracy. For the panel-sequenced tumors, the additive feature combination approach of three or more of six achieved accuracies of 100%, 95.5%, and 100% for CRCs, ECs, and SSTs, respectively. The microsatellite instability calling tools performed well in WES CRCs; however, an approach combining tumor features may improve dMMR prediction in both WES and panel-sequenced data across tissue types.


Subject(s)
Colorectal Neoplasms , Endometrial Neoplasms , Female , Humans , DNA Mismatch Repair/genetics , Microsatellite Instability , Colorectal Neoplasms/genetics , High-Throughput Nucleotide Sequencing
12.
BMC Gastroenterol ; 22(1): 489, 2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36435745

ABSTRACT

OBJECTIVE: The unknown aetiology of Serrated Polyposis Syndrome (SPS) impedes risk prediction and prevention. We investigated risk factors for SPS, overall and stratified by World Health Organization (WHO)2010 clinical criteria and by colorectal cancer (CRC). METHOD: A retrospective case-control study involving a cross-sectional analysis from 350 unrelated individuals with SPS from the Genetics of Colonic Polyposis Study and 714 controls from the Australasian Colorectal Cancer Family Registry. Univariate and multivariate logistic regression modelling was used to determine the association between risk factors and SPS and risk factors associated with CRC in SPS. RESULTS: Female biological sex (odds ratio (OR) = 4.54; 95%Confidence interval (CI) = 2.77-7.45), increasing body mass index (BMI) at age 20 years (OR = 1.09; 95%CI = 1.04-1.13), hormone replacement therapy (OR = 0.44; 95%CI = 0.20.98), and increasing weekly folate intake (OR = 0.82; 95%CI = 0.75-0.90) were associated with SPS by multivariate analysis. Increasing weekly calcium intake (OR = 0.79; 95%CI = 0.64-0.97) and smoking > 10 cigarettes daily (OR = 0.45; 95%CI = 0.23-0.86) were associated with WHO criterion I only. The consumption of 1-100 g of alcohol per week (OR = 0.39; 95%CI = 0.18-0.83) was associated with WHO criterion III only. Smoking 1-5 cigarettes daily (OR = 2.35; 95%CI = 1.09-5.05), weekly non-steroidal anti-inflammatory drug (NSAIDs) intake (OR = 0.88; 95%CI = 0.78-0.99), and increased height (OR = 1.09; 95% = 1.05-1.13), were associated with SPS fulfilling both WHO criteria I and III. Moreover, weekly NSAIDs intake (OR = 0.81; 95%CI = 0.67-0.98) was associated with a reduced likelihood of CRC in SPS. CONCLUSION: We identified novel risk and potential protective factors associated with SPS, some specific for certain WHO2010 criteria. Weekly use of NSAIDs may reduce the risk of CRC in people with SPS.


Subject(s)
Adenomatous Polyposis Coli , Colonic Polyps , Colorectal Neoplasms , Female , Humans , Young Adult , Adult , Body Mass Index , Colonoscopy , Case-Control Studies , Retrospective Studies , Australia/epidemiology , Cross-Sectional Studies , Smoking/adverse effects , Colorectal Neoplasms/epidemiology , Syndrome , World Health Organization , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Anti-Inflammatory Agents
13.
Epigenetics ; 17(12): 1838-1847, 2022 12.
Article in English | MEDLINE | ID: mdl-35726372

ABSTRACT

Lifestyle-related phenotypes have been shown to be heritable and associated with DNA methylation. We aimed to investigate whether genetic predisposition to tobacco smoking, alcohol consumption, and higher body mass index (BMI) moderates the effect of these phenotypes on blood DNA methylation. We calculated polygenic scores (PGS) to quantify genetic predisposition to these phenotypes using training (N = 7,431) and validation (N = 4,307) samples. Using paired genetic-methylation data (N = 4,307), gene-environment interactions (i.e., PGS × lifestyle) were assessed using linear mixed-effects models with outcomes: 1) methylation at sites found to be strongly associated with smoking (1,061 CpGs), alcohol consumption (459 CpGs), and BMI (85 CpGs) and 2) two epigenetic ageing measures, PhenoAge and GrimAge. In the validation sample, PGS explained ~1.4% (P = 1 × 10-14), ~0.6% (P = 2 × 10-7), and ~8.7% (P = 7 × 10-87) of variance in smoking initiation, alcohol consumption, and BMI, respectively. Nominally significant interaction effects (P < 0.05) were found at 61, 14, and 7 CpGs for smoking, alcohol consumption, and BMI, respectively. There was strong evidence that all lifestyle-related phenotypes were positively associated with PhenoAge and GrimAge, except for alcohol consumption with PhenoAge. There was weak evidence that the association of smoking with GrimAge was attenuated in participants genetically predisposed to smoking (interaction term: -0.022, standard error [SE] = 0.012, P = 0.058) and that the association of alcohol consumption with PhenoAge was attenuated in those genetically predisposed to drink alcohol (interaction term: -0.030, SE = 0.015, P = 0.041). In conclusion, genetic susceptibility to unhealthy lifestyles did not strongly modify the association between observed lifestyle behaviour and blood DNA methylation. Potential associations were observed for epigenetic ageing measures, which should be replicated in additional studies.


Subject(s)
DNA Methylation , Genetic Predisposition to Disease , Humans , Smoking/adverse effects , Smoking/genetics , Body Mass Index , Alcohol Drinking/genetics , Epigenesis, Genetic
14.
Nat Commun ; 13(1): 3254, 2022 06 06.
Article in English | MEDLINE | ID: mdl-35668106

ABSTRACT

Carriers of germline biallelic pathogenic variants in the MUTYH gene have a high risk of colorectal cancer. We test 5649 colorectal cancers to evaluate the discriminatory potential of a tumor mutational signature specific to MUTYH for identifying biallelic carriers and classifying variants of uncertain clinical significance (VUS). Using a tumor and matched germline targeted multi-gene panel approach, our classifier identifies all biallelic MUTYH carriers and all known non-carriers in an independent test set of 3019 colorectal cancers (accuracy = 100% (95% confidence interval 99.87-100%)). All monoallelic MUTYH carriers are classified with the non-MUTYH carriers. The classifier provides evidence for a pathogenic classification for two VUS and a benign classification for five VUS. Somatic hotspot mutations KRAS p.G12C and PIK3CA p.Q546K are associated with colorectal cancers from biallelic MUTYH carriers compared with non-carriers (p = 2 × 10-23 and p = 6 × 10-11, respectively). Here, we demonstrate the potential application of mutational signatures to tumor sequencing workflows to improve the identification of biallelic MUTYH carriers.


Subject(s)
Colorectal Neoplasms , DNA Glycosylases , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , DNA Glycosylases/genetics , DNA Mutational Analysis , Genetic Predisposition to Disease , Germ-Line Mutation , Heterozygote , Humans , Mutation
15.
Fam Cancer ; 21(4): 399-413, 2022 10.
Article in English | MEDLINE | ID: mdl-34817745

ABSTRACT

Germline loss-of-function variants in AXIN2 are associated with oligodontia and ectodermal dysplasia. The association between colorectal cancer (CRC) and colonic polyposis is less clear despite this gene now being included in multi-gene panels for CRC. Study participants were people with genetically unexplained colonic polyposis recruited to the Genetics of Colonic Polyposis Study who had a rare germline AXIN2 gene variant identified from either clinical multi-gene panel testing (n=2) or from whole genome/exome sequencing (n=2). Variant segregation in relatives and characterisation of tumour tissue were performed where possible. Four different germline pathogenic variants in AXIN2 were identified in four families. Five of the seven carriers of the c.1049delC, p.Pro350Leufs*13 variant, two of the six carriers of the c.1994dupG, p.Asn666Glnfs*41 variant, all three carriers of c.1972delA, p.Ser658Alafs*31 variant and the single proband carrier of the c.2405G>C, p.Arg802Thr variant, which creates an alternate splice form resulting in a frameshift mutation (p.Glu763Ilefs*42), were affected by CRC and/or polyposis. Carriers had a mean age at diagnosis of CRC/polyposis of 52.5 ± 9.2 years. Colonic polyps were typically pan colonic with counts ranging from 5 to >100 (median 12.5) comprising predominantly adenomatous polyps but also serrated polyps. Two CRCs from carriers displayed evidence of a second hit via loss of heterozygosity. Oligodontia was observed in carriers from two families. Germline AXIN2 pathogenic variants from four families were associated with CRC and/or polyposis in multiple family members. These findings support the inclusion of AXIN2 in CRC and polyposis multigene panels for clinical testing.


Subject(s)
Adenomatous Polyposis Coli , Anodontia , Colorectal Neoplasms , Humans , Adult , Middle Aged , Adenomatous Polyposis Coli/genetics , Adenomatous Polyposis Coli/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Mutation , Heterozygote , Germ Cells/pathology , Germ-Line Mutation , Axin Protein/genetics
16.
BMC Res Notes ; 14(1): 394, 2021 Oct 24.
Article in English | MEDLINE | ID: mdl-34689793

ABSTRACT

OBJECTIVE: In previous studies using Illumina Infinium methylation arrays, we have identified DNA methylation marks associated with cancer predisposition and progression. In the present study, we have sought to find appropriate technology to both technically validate our data and expand our understanding of DNA methylation in these genomic regions. Here, we aimed to assess the repeatability of methylation measures made using QIAseq targeted methyl panel and to compare them with those obtained from the Illumina HumanMethylation450 (HM450K) assay. We included in the analysis high molecular weight DNA extracted from whole blood (WB) and DNA extracted from formalin-fixed paraffin-embedded tissues (FFPE). RESULTS: The repeatability of QIAseq-methylation measures was assessed at 40 CpGs, using the Intraclass Correlation Coefficient (ICC). The mean ICCs and 95% confidence intervals (CI) were 0.72 (0.62-0.81), 0.59 (0.47-0.71) and 0.80 (0.73-0.88) for WB, FFPE and both sample types combined, respectively. For technical replicates measured using QIAseq and HM450K, the mean ICCs (95% CI) were 0.53 (0.39-0.68), 0.43 (0.31-0.56) and 0.70 (0.59-0.80), respectively. Bland-Altman plots indicated good agreement between QIAseq and HM450K measurements. These results demonstrate that the QIAseq targeted methyl panel produces reliable and reproducible methylation measurements across the 40 CpGs that were examined.


Subject(s)
DNA Methylation , High-Throughput Nucleotide Sequencing , Genomics , Oligonucleotide Array Sequence Analysis , Paraffin Embedding
17.
Cancers (Basel) ; 13(11)2021 May 25.
Article in English | MEDLINE | ID: mdl-34070516

ABSTRACT

We investigated aberrant DNA methylation (DNAm) changes and the contribution of ageing-associated methylomic drift and age acceleration to early-onset colorectal cancer (EOCRC) carcinogenesis. Genome-wide DNAm profiling using the Infinium HM450K on 97 EOCRC tumour and 54 normal colonic mucosa samples was compared with: (1) intermediate-onset CRC (IOCRC; diagnosed between 50-70 years; 343 tumour and 35 normal); and (2) late-onset CRC (LOCRC; >70 years; 318 tumour and 40 normal). CpGs associated with age-related methylation drift were identified using a public dataset of 231 normal mucosa samples from people without CRC. DNAm-age was estimated using epiTOC2. Common to all three age-of-onset groups, 88,385 (20% of all CpGs) CpGs were differentially methylated between tumour and normal mucosa. We identified 234 differentially methylated genes that were unique to the EOCRC group; 13 of these DMRs/genes were replicated in EOCRC compared with LOCRCs from TCGA. In normal mucosa from people without CRC, we identified 28,154 CpGs that undergo ageing-related DNAm drift, and of those, 65% were aberrantly methylated in EOCRC tumours. Based on the mitotic-based DNAm clock epiTOC2, we identified age acceleration in normal mucosa of people with EOCRC compared with normal mucosa from the IOCRC, LOCRC groups (p = 3.7 × 10-16) and young people without CRC (p = 5.8 × 10-6). EOCRC acquires unique DNAm alterations at 234 loci. CpGs associated with ageing-associated drift were widely affected in EOCRC without needing the decades-long accrual of DNAm drift as commonly seen in intermediate- and late-onset CRCs. Accelerated ageing in normal mucosa from people with EOCRC potentially underlies the earlier age of diagnosis in CRC carcinogenesis.

18.
Gut ; 70(11): 2138-2149, 2021 11.
Article in English | MEDLINE | ID: mdl-33414168

ABSTRACT

OBJECTIVE: Germline pathogenic variants (PVs) in the DNA mismatch repair (MMR) genes and in the base excision repair gene MUTYH underlie hereditary colorectal cancer (CRC) and polyposis syndromes. We evaluated the robustness and discriminatory potential of tumour mutational signatures in CRCs for identifying germline PV carriers. DESIGN: Whole-exome sequencing of formalin-fixed paraffin-embedded (FFPE) CRC tissue was performed on 33 MMR germline PV carriers, 12 biallelic MUTYH germline PV carriers, 25 sporadic MLH1 methylated MMR-deficient CRCs (MMRd controls) and 160 sporadic MMR-proficient CRCs (MMRp controls) and included 498 TCGA CRC tumours. COSMIC V3 single base substitution (SBS) and indel (ID) mutational signatures were assessed for their ability to differentiate CRCs that developed in carriers from non-carriers. RESULTS: The combination of mutational signatures SBS18 and SBS36 contributing >30% of a CRC's signature profile was able to discriminate biallelic MUTYH carriers from all other non-carrier control CRCs with 100% accuracy (area under the curve (AUC) 1.0). SBS18 and SBS36 were associated with specific MUTYH variants p.Gly396Asp (p=0.025) and p.Tyr179Cys (p=5×10-5), respectively. The combination of ID2 and ID7 could discriminate the 33 MMR PV carrier CRCs from the MMRp control CRCs (AUC 0.99); however, SBS and ID signatures, alone or in combination, could not provide complete discrimination (AUC 0.79) between CRCs from MMR PV carriers and sporadic MMRd controls. CONCLUSION: Assessment of SBS and ID signatures can discriminate CRCs from biallelic MUTYH carriers and MMR PV carriers from non-carriers with high accuracy, demonstrating utility as a potential diagnostic and variant classification tool.


Subject(s)
Adenomatous Polyposis Coli/genetics , Colorectal Neoplasms/genetics , DNA Glycosylases , Germ-Line Mutation , MutL Protein Homolog 1 , DNA Mismatch Repair , Female , Genetic Predisposition to Disease , Heterozygote , Humans , Male , Middle Aged , Syndrome , Exome Sequencing
19.
JNCI Cancer Spectr ; 5(1)2021 02.
Article in English | MEDLINE | ID: mdl-33442664

ABSTRACT

Background: We previously investigated the association between 5 "first-generation" measures of epigenetic aging and cancer risk in the Melbourne Collaborative Cohort Study. This study assessed cancer risk associations for 3 recently developed methylation-based biomarkers of aging: PhenoAge, GrimAge, and predicted telomere length. Methods: We estimated rate ratios (RRs) for the association between these 3 age-adjusted measures and risk of colorectal (N = 813), gastric (N = 165), kidney (N = 139), lung (N = 327), mature B-cell (N = 423), prostate (N = 846), and urothelial (N = 404) cancer using conditional logistic regression models. We also assessed associations by time since blood draw and by cancer subtype, and we investigated potential nonlinearity. Results: We observed relatively strong associations of age-adjusted PhenoAge with risk of colorectal, kidney, lung, mature B-cell, and urothelial cancers (RR per SD was approximately 1.2-1.3). Similar findings were obtained for age-adjusted GrimAge, but the association with lung cancer risk was much larger (RR per SD = 1.82, 95% confidence interval [CI] = 1.44 to 2.30), after adjustment for smoking status, pack-years, starting age, time since quitting, and other cancer risk factors. Most associations appeared linear, larger than for the first-generation measures, and were virtually unchanged after adjustment for a large set of sociodemographic, lifestyle, and anthropometric variables. For cancer overall, the comprehensively adjusted rate ratio per SD was 1.13 (95% CI = 1.07 to 1.19) for PhenoAge and 1.12 (95% CI = 1.05 to 1.20) for GrimAge and appeared larger within 5 years of blood draw (RR = 1.29, 95% CI = 1.15 to 1.44 and 1.19, 95% CI = 1.06 to 1.33, respectively). Conclusions: The methylation-based measures PhenoAge and GrimAge may provide insights into the relationship between biological aging and cancer and be useful to predict cancer risk, particularly for lung cancer.


Subject(s)
Aging/blood , DNA Methylation , Neoplasms/blood , Telomere , Adult , Age Factors , Aged , Aging/genetics , Biomarkers/blood , Case-Control Studies , Colorectal Neoplasms/blood , Colorectal Neoplasms/genetics , Confidence Intervals , DNA/blood , Epigenesis, Genetic , Female , Humans , Kidney Neoplasms/blood , Kidney Neoplasms/genetics , Logistic Models , Lung Neoplasms/blood , Lung Neoplasms/genetics , Lymphoma, B-Cell/blood , Lymphoma, B-Cell/genetics , Male , Middle Aged , Neoplasms/genetics , Prospective Studies , Prostatic Neoplasms/blood , Prostatic Neoplasms/genetics , Risk Factors , Smoking , Stomach Neoplasms/blood , Stomach Neoplasms/genetics , Telomere Homeostasis , Urologic Neoplasms/blood , Urologic Neoplasms/genetics
20.
Addict Biol ; 26(1): e12855, 2021 01.
Article in English | MEDLINE | ID: mdl-31789449

ABSTRACT

DNA methylation may be one of the mechanisms by which alcohol consumption is associated with the risk of disease. We conducted a large-scale, cross-sectional, genome-wide DNA methylation association study of alcohol consumption and a longitudinal analysis of repeated measurements taken several years apart. Using the Illumina HumanMethylation450 BeadChip, DNA methylation was measured in blood samples from 5606 Melbourne Collaborative Cohort Study (MCCS) participants. For 1088 of them, these measures were repeated using blood samples collected a median of 11 years later. Associations between alcohol intake and blood DNA methylation were assessed using linear mixed-effects regression models. Independent data from the London Life Sciences Prospective Population (LOLIPOP) (N = 4042) and Cooperative Health Research in the Augsburg Region (KORA) (N = 1662) cohorts were used to replicate associations discovered in the MCCS. Cross-sectional analyses identified 1414 CpGs associated with alcohol intake at P < 10-7 , 1243 of which had not been reported previously. Of these novel associations, 1078 were replicated (P < .05) using LOLIPOP and KORA data. Using the MCCS data, we also replicated 403 of 518 previously reported associations. Interaction analyses suggested that associations were stronger for women, non-smokers, and participants genetically predisposed to consume less alcohol. Of the 1414 CpGs, 530 were differentially methylated (P < .05) in former compared with current drinkers. Longitudinal associations between the change in alcohol intake and the change in methylation were observed for 513 of the 1414 cross-sectional associations. Our study indicates that alcohol intake is associated with widespread changes in DNA methylation across the genome. Longitudinal analyses showed that the methylation status of alcohol-associated CpGs may change with alcohol consumption changes in adulthood.


Subject(s)
Alcohol Drinking/genetics , DNA Methylation , Adult , Aged , Cohort Studies , CpG Islands , Cross-Sectional Studies , Epigenesis, Genetic , Female , Genome-Wide Association Study , Humans , Male , Middle Aged , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...