Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dis Model Mech ; 10(2): 105-118, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28067622

ABSTRACT

A consanguineous family from Pakistan was ascertained to have a novel deafness-dystonia syndrome with motor regression, ichthyosis-like features and signs of sensory neuropathy. By applying a combined strategy of linkage analysis and whole-exome sequencing in the presented family, a homozygous nonsense mutation, c.4G>T (p.Glu2*), in FITM2 was identified. FITM2 and its paralog FITM1 constitute an evolutionary conserved protein family involved in partitioning of triglycerides into cellular lipid droplets. Despite the role of FITM2 in neutral lipid storage and metabolism, no indications for lipodystrophy were observed in the affected individuals. In order to obtain independent evidence for the involvement of FITM2 in the human pathology, downregulation of the single Fitm ortholog, CG10671, in Drosophila melanogaster was pursued using RNA interference. Characteristics of the syndrome, including progressive locomotor impairment, hearing loss and disturbed sensory functions, were recapitulated in Drosophila, which supports the causative nature of the FITM2 mutation. Mutation-based genetic counseling can now be provided to the family and insight is obtained into the potential impact of genetic variation in FITM2.


Subject(s)
Deaf-Blind Disorders/genetics , Drosophila Proteins/genetics , Dystonia/genetics , Ichthyosis/genetics , Intellectual Disability/genetics , Membrane Proteins/genetics , Motor Activity , Mutation/genetics , Optic Atrophy/genetics , Sensory Receptor Cells/pathology , Adiposity , Animals , Audiometry, Pure-Tone , Base Sequence , Child , Codon, Nonsense/genetics , Deaf-Blind Disorders/blood , Deaf-Blind Disorders/physiopathology , Disease Models, Animal , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Dystonia/blood , Dystonia/physiopathology , Female , Gene Expression Regulation , Gene Knockdown Techniques , HEK293 Cells , Hearing Loss/genetics , Homozygote , Humans , Ichthyosis/complications , Ichthyosis/physiopathology , Intellectual Disability/blood , Intellectual Disability/physiopathology , Lipid Droplets/metabolism , Liver/metabolism , Locomotion , Male , Membrane Proteins/metabolism , Optic Atrophy/blood , Optic Atrophy/physiopathology , Pedigree , Exome Sequencing , Young Adult
2.
J Biol Chem ; 287(44): 36756-65, 2012 Oct 26.
Article in English | MEDLINE | ID: mdl-22930751

ABSTRACT

Claudins are integral transmembrane components of the tight junctions forming trans-epithelial barriers in many organs, such as the nervous system, lung, and epidermis. In Drosophila three claudins have been identified that are required for forming the tight junctions analogous structure, the septate junctions (SJs). The lack of claudins results in a disruption of SJ integrity leading to a breakdown of the trans-epithelial barrier and to disturbed epithelial morphogenesis. However, little is known about claudin partners for transport mechanisms and membrane organization. Here we present a comprehensive analysis of the claudin proteome in Drosophila by combining biochemical and physiological approaches. Using specific antibodies against the claudin Megatrachea for immunoprecipitation and mass spectrometry, we identified 142 proteins associated with Megatrachea in embryos. The Megatrachea interacting proteins were analyzed in vivo by tissue-specific knockdown of the corresponding genes using RNA interference. We identified known and novel putative SJ components, such as the gene product of CG3921. Furthermore, our data suggest that the control of secretion processes specific to SJs and dependent on Sec61p may involve Megatrachea interaction with Sec61 subunits. Also, our findings suggest that clathrin-coated vesicles may regulate Megatrachea turnover at the plasma membrane similar to human claudins. As claudins are conserved both in structure and function, our findings offer novel candidate proteins involved in the claudin interactome of vertebrates and invertebrates.


Subject(s)
Claudins/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Membrane Proteins/metabolism , Animals , Drosophila melanogaster/embryology , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/metabolism , Gene Knockdown Techniques , Immunoprecipitation , Membrane Proteins/genetics , Multiprotein Complexes/metabolism , Phenotype , Protein Interaction Mapping , Protein Transport , Proteome/metabolism , RNA Interference , Respiratory System/embryology , Respiratory System/metabolism , Secretory Pathway , Tight Junctions/metabolism
3.
FEBS Lett ; 581(30): 5774-80, 2007 Dec 22.
Article in English | MEDLINE | ID: mdl-18037383

ABSTRACT

We recently reported that a histidine (H191) in the S3-S4 loop of domain I is critical for nickel inhibition of the Cav3.2 T-type Ca2+ channel. As in Cav3.2, two histidine residues are commonly found in the IS3-IS4 loops of mammalian Cav2.3 Ca2+ channels, which are also blocked by low micromolar concentrations of nickel. We show here by site-directed mutagenesis and electrophysiology that both residues contribute to the nickel sensitivity of Cav2.3, with H183 being more critical than H179. These findings strongly suggest that both H179 and H183 in the IS3-IS4 loop are essential structural determinants required for nickel sensitive inhibition of the Cav2.3.


Subject(s)
Calcium Channels, R-Type/chemistry , Cation Transport Proteins/antagonists & inhibitors , Cation Transport Proteins/chemistry , Histidine/metabolism , Nickel/pharmacology , Amino Acid Sequence , Animals , Calcium Channels, R-Type/metabolism , Cation Transport Proteins/metabolism , Dose-Response Relationship, Drug , Female , Humans , Ion Channel Gating/drug effects , Molecular Sequence Data , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Protein Structure, Secondary , Sequence Alignment , Structure-Activity Relationship , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL