Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters











Publication year range
1.
Sci Adv ; 10(32): eadp0778, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39121228

ABSTRACT

This study reports intrinsic multimodal memristivity of a nonconjugated radical polymer with ambient stability. Organic memristive devices represent powerful candidates for biorealistic data storage and processing. However, there exists a substantial knowledge gap in realizing the synthetic biorealistic systems capable of effectively emulating the cooperative and multimodal activation processes in biological systems. In addition, conventional organic memristive materials are centered on conjugated small and macromolecules, making them synthetically challenging or difficult to process. In this work, we first describe the intrinsic resistive switching of the radical polymer that resulted in an exceptional state retention of >105 s and on/off ratio of >106. Next, we demonstrate its bimodal cooperative switching, in response to the proton accumulation as a biological input. Last, we expand our system toward an advanced in-sensor computing system. Our research demonstrates a nonconjugated radical polymer with intrinsic memristivity, which is directly applicable to future electronics including data storage, neuromorphics, and in-sensor computing.

2.
ACS Macro Lett ; 13(7): 832-833, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38905639
3.
JACS Au ; 4(2): 690-696, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38425938

ABSTRACT

Nonconjugated organic radicals with an open-shell radical active group exhibit unique functionality due to their radical pendant site. Compared with the previously studied doped conjugated polymers, radical polymers reveal superior processability, stability, and optical properties. Despite the success of organic radical polymer conductors based on the TEMPO radicals, it still requires potential design substitutions to meet the fundamental limits of charge transport in the radical polymer. To do so, we demonstrate that the amorphous, nonconjugated radical polymer with backbone-pendant group interaction and low glass transition temperature enables the macromolecules to have rapid charge transport in the solid state, resulting in conductivity higher than 32 S m-1. This charge transport is due to the formation of the local ordered regime with an energetically favored orientation caused by the strong coupling between the backbone and pendant group, which can significantly modulate the polymer packing with active electronic communications. The nonconjugate nature of the radical polymer maintains an optical transparency up to 98% at a 1.5 µm thick film. Thus, this effort will be a dramatically advanced model in the organic radical community for the creation of next-generation polymer conductors.

4.
Nanomaterials (Basel) ; 13(18)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37764622

ABSTRACT

Boron nitride nanotubes (BNNTs) were purified without the use of a dispersant by controlling the surface tension and steric repulsion of solvent molecules. This method effectively enhanced the difference in solubilities of impurities and BNNTs. The purification process involved optimizing the alkyl-chains of alcohol solvents and adjusting the concentration of alcohol solvent in water to regulate surface tension and steric repulsion. Among the solvents tested, a 70 wt% t-butylalcohol in water mixture exhibited the highest selective isolation of BNNTs from impurities based on differences in solubilities. This favorable outcome was attributed to the surface tension matching with BNNTs, steric repulsion from bulky alkyl chain structures, and differences in interfacial energy between BNNT-liquid and impurity-liquid interfaces. Through this optimized purification process, impurities were removed to an extent of up to 93.3%. Additionally, the purified BNNTs exhibited a distinct liquid crystal phase, which was not observed in the unpurified BNNTs.

5.
ACS Appl Mater Interfaces ; 15(20): 24681-24692, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37163756

ABSTRACT

Microfiber fabrication via wet-spinning of lyotropic liquid crystals (LCs) with anisotropic nanomaterials has gained increased attention due to the microfibers' excellent physical/chemical properties originating from the unidirectional alignment of anisotropic nanomaterials along the fiber axis with high packing density. For wet-spinning of the microfibers, however, preparing lyotropic LCs by achieving high colloidal stability of anisotropic nanomaterials, even at high concentrations, has been a critically unmet prerequisite, especially for recently emerging nanomaterials. Here, we propose a cationically charged polymeric stabilizer that can efficiently be adsorbed on the surface of boron nitride nanotubes (BNNTs), which provide steric hindrance in combination with Coulombic repulsion leading to high colloidal stability of BNNTs up to 22 wt %. The BNNT LCs prepared from the dispersions with various stabilizers were systematically compared using optical and rheological analysis to optimize the phase behavior and rheological properties for wet-spinning of the BNNT LCs. Systematic optical and mechanical characterizations of the BNNT microfibers with aligned BNNTs along the fiber axis revealed that properties of the microfibers, such as their tensile strength, packing density, and degree of BNNT alignment, were highly dependent on the quality of BNNT LCs directly related to the types of stabilizers.

6.
Small Methods ; 7(4): e2201341, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36707408

ABSTRACT

Boron nitride nanotube (BNNT) has attracted recent attention owing to its exceptional material properties; yet, practical implementation in real-life applications has been elusive, mainly due to the purity issues associated with its large-scale synthesis. Although different purification methods have been discussed so far, there lacks a scalable solution method in the community. In this work, a simple, high-throughput, and scalable purification of BNNT is reported via modification of an established sorting technique, aqueous polymer two-phase extraction. A complete partition mapping of the boron nitride species is established, which enables the segregation of the highly pure BNNT with a major impurity removal efficiency of > 98%. A successful scaling up of the process is illustrated and provides solid evidence of its diameter sorting behavior. Last, towards its macroscopic assemblies, a liquid crystal of the purified BNNT is demonstrated. The effort toward large-scale solution purification of BNNT is believed to contribute significantly to the macroscopic realization of its exceptional properties in the near future.

7.
Mater Horiz ; 10(2): 491-498, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36218055

ABSTRACT

Electronic wastes from used devices containing environmentally hazardous materials are an immediate concern for the sustainable development of electronic and sensor industries. To address this, a highly controllable and dedicated electronic module should be devised, that allows systematic recollection of as many components from the original device for their reuse. Here, we report the total recycling of an electronic device, exploiting a water-floating system that is based on a water-compatible semiconductor as an active material. To do so, we developed a system for stable electronics on the water surface. The floating semiconductor features a tunable morphology on the water surface, and is constructed into a water-floating gated transistor (WFGT) and water floating sensor (WFS), exhibiting an on-current of 4.2 × 10-5 A and an on/off ratio of ∼103. The device showed high recyclability over 25 cycles, with an efficiency of 99 ± 0.9% within 1 cycle and 92 ± 0.7% within 30 cycles. Furthermore, the device was also found to be stable for over 10 days. Our system has the potential to be an eco-friendly, cost-effective, and scalable device that is fully recyclable, which can be applied in areas once thought of as being beyond the scope of current semiconductor technology.

8.
JACS Au ; 2(9): 2089-2097, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36186563

ABSTRACT

Stable, nitroxide-based organic radicals have gained tremendous attention in a wide range of research fields, ranging from solid-state electronics to energy storage devices. While the success of these organics has been their designer flexibility and the processability that can fully potentiate the open-shell chemistry, a significant knowledge gap exists on the solid-state electronics of small-molecular radicals. Herein, we examine the structure-property relationship that governs the solid-state electronics of a model nitroxide and its derivatives by seeking the connection to their well-established, electrolyte-based chemistry. Further, we propose a general strategy of enhancing their solid-state conductivity by systematic humidity control. This study demonstrates an open-shell platform of the device operation and underlying principles thereof, which can potentially be applied in a number of future radical-based electronic devices.

9.
ACS Appl Mater Interfaces ; 14(38): 43538-43546, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36099173

ABSTRACT

Electronic wastes from transient electronics accumulate biologically harmful materials with global concern. Recycling these wastes could prevent the deposition of hazardous chemicals and toxic materials to the environment while saving scarce natural compounds and valuable resources. Here, we report a sustainable electronic device, taking advantage of carbon resources and a biodegradable cellulose composite. The device consists of an ambient-stable carbon nanotube as a semiconductor, graphene as electrodes, and a free-standing cellulose filter paper/nanocellulose composite as a dielectric layer. The dual-functional cellulose composite acting simultaneously as a robust substrate and a dielectric is demonstrated, which is compatible with solution device fabrication processes. An optimized channel dimension of 5 mm × 3 mm with the addition of ions that facilitates a charge transport realized a device with an on-current per width of 9.6 µA mm-1, an on/off ratio >102, a field-effect mobility of 2.03 cm2 V-1 s-1, and long-term stability over 30 days under ambient conditions. Successful separation of the carbonaceous components via an eco-friendly solution sorting protocol allowed the recycled device to display excellent electronic performance, with a recapture efficiency of 90%. This effort demonstrates a processable, low-cost, and sustainable electronic system that can be applied in the current realm of the semiconducting and sensing industry.

10.
ACS Appl Mater Interfaces ; 13(10): 12417-12424, 2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33650842

ABSTRACT

Boron nitride nanotubes (BNNTs) have attracted increasing attention for their exceptional thermal, electronic, and optical properties. However, the progress in BNNTs applications has largely been limited by the low purity of as-synthesized BNNTs and inefficient solution-processing protocols due mainly to the instability of BNNTs in most of the solvents. Therefore, fabrication of highly pure, stable, and fully individualized BNNTs in a rational manner is required. Here, we report a significant improvement in the preparation of well-dispersed BNNTs, utilizing conjugated polymers that interact with BNNTs, allowing selective sorting and individualization of the nanotubes. Evidence of strong interactions between the polymers and BNNTs was observed by optical absorption and photoluminescence spectroscopies, while effective individualization was observed by electron microscopy. The sorted BNNTs were successfully used in a solution-processing protocol called dose-controlled, floating evaporative self-assembly (DFES) previously established for single-walled carbon nanotubes (SWCNT) array fabrication. A device fabricated via DFES from the sorted BNNTs mixed with polymer-wrapped, semiconducting single-walled carbon nanotubes (s-SWCNTs) exhibited an on-state conductance of 253 ± 6 µS µm-1 and an on/off ratio of 106.6±0.4 for a gate voltage of -0.1 V. This breakthrough in BNNT dispersion and isolation is a significant advancement toward the exploitation of BNNTs in future applications.

11.
Nano Lett ; 20(7): 5376-5382, 2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32525687

ABSTRACT

Charge neutral, nonconjugated organic radicals have emerged as extremely useful active materials for solid-state electronic applications. This previous achievement confirmed the potential of radical-based macromolecules in organic electronic devices; however, charge transport in radical molecules has not been studied in great detail from a fundamental perspective. Here we demonstrate the charge transport in a nonconjugated organic small radical, 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (h-TEMPO). The chemical component of this radical molecule allows us to form a single crystal via physical vapor deposition (PVD). While the charge transport of this macroscopic open-shell single crystal is rather low, thermal annealing of the well-defined single crystal enables the molecule to have a rapid charge transfer reaction due to the electronic communication of open-shell sites with each other, which results in electrical conductivities greater than 0.05 S m-1. This effort demonstrates a drastically different model than the commonly accepted conjugated polymers or molecules for the creation of next-generation conductors.

12.
Langmuir ; 34(37): 10828-10836, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30145906

ABSTRACT

Molecular monolayers that can be reconfigured through the use of external stimuli promise to enable the creation of interfaces with precisely selected dynamically adjustable physical and electronic properties with potential impact ranging from electronics to energy storage. Azobenzene-containing molecular monolayers have multiple stable molecular conformations but face a challenging nanoscale problem associated with understanding the basic mechanisms of reconfiguration. Time-resolved X-ray reflectivity studies show that the reconfiguration of a densely packed rhenium-azobenzene monolayer occurs in a period of many seconds. The degree of reconfiguration from trans to cis forms depends on the integrated UV fluence and has kinetics that are consistent with a mechanism in which the transformation occurs through the nucleation and growth of nanoscale two-dimensional regions of the cis isomer.

13.
Science ; 359(6382): 1391-1395, 2018 03 23.
Article in English | MEDLINE | ID: mdl-29567710

ABSTRACT

Solid-state conducting polymers usually have highly conjugated macromolecular backbones and require intentional doping in order to achieve high electrical conductivities. Conversely, single-component, charge-neutral macromolecules could be synthetically simpler and have improved processibility and ambient stability. We show that poly(4-glycidyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl), a nonconjugated radical polymer with a subambient glass transition temperature, underwent rapid solid-state charge transfer reactions and had an electrical conductivity of up to 28 siemens per meter over channel lengths up to 0.6 micrometers. The charge transport through the radical polymer film was enabled with thermal annealing at 80°C, which allowed for the formation of a percolating network of open-shell sites in electronic communication with one another. The electrical conductivity was not enhanced by intentional doping, and thin films of this material showed high optical transparency.

14.
ACS Appl Mater Interfaces ; 9(46): 40734-40742, 2017 Nov 22.
Article in English | MEDLINE | ID: mdl-29067812

ABSTRACT

Separation of electronically pure, narrowly dispersed, pristine, semiconducting single-walled carbon nanotubes (CNTs) from a heterogeneous as-synthesized mixture is essential for various semiconducting technologies and biomedical applications. Although conjugated polymer wrappers are often utilized to facilitate electronic-type sorting, it is highly desirable to remove organic residues from the resulting devices. We report here the design and synthesis of a mild acid-degradable π-conjugated polyimine polymer, poly[(9,9-di-n-octyl-2,7-fluoren-dinitrilomethine)-alt-co-(6,6'-{2,2'-bipyridyl-dimethine})] (PFO-N-BPy), that is structurally analogous to the commonly used and commercially available poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(6,6'-(2,2'-bipyridine))] (PFO-BPy). An acid cleavable imine link (-HC═N-) was introduced in the PFO-N-BPy backbone to impart degradability, which is absent in PFO-BPy. PFO-N-BPy was synthesized via a metal catalyst-free aza-Wittig reaction in high yields. PFO-N-BPy with a degree of polymerization of just ∼10 showed excellent (>99% electronic purity) selectivity for both large-diameter (1.3-1.7 nm) arc-discharge semiconducting CNTs (S-CNTs) and smaller diameter (0.8-1.2 nm) high-pressure carbon monoxide disproportionation reaction S-CNTs. Overall, the selectivity for the semiconducting species is similar to that of PFO-BPy but with an advantage of complete depolymerization under mild acidic conditions into recyclable monomers. We further show by ultraviolet-visible spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy that the PFO-N-BPy-wrapped S-CNTs can be aligned into a monolayer array on gate dielectrics using a floating evaporative self-assembly process from which the polymer can be completely removed. Short channel field effect transistors were fabricated from the polymer-stripped aligned S-CNT arrays, which further confirmed the semiconducting purity on the order of 99.9% or higher.

15.
ACS Appl Mater Interfaces ; 9(34): 28859-28867, 2017 Aug 30.
Article in English | MEDLINE | ID: mdl-28758721

ABSTRACT

Conjugated polymers are used commonly to selectively sort semiconducting carbon nanotubes (S-CNTs) from their metallic counterparts in organic solvents. The polymer-wrapped S-CNTs can be easily processed from organic solvents into arrays of CNTs for scalable device fabrication. Though the conjugated polymers are essential for sorting and device fabrication, it is highly desirable to remove them completely as they limit the electronic properties of the device. Here, we use a commercially available polymer, namely, poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(6,6'-(2,2'-bipyridine))] (PFO-BPy), to sort large-diameter S-CNTs with ultrahigh selectivity and fabricate CNT-array-based field effect transistors (FETs) via a floating evaporative self-assembly (FESA) process. We report quantitative removal of the polymer wrapper from the FESA aligned S-CNT arrays using a metal-chelation-assisted polymer removal (McAPR) process. The implementation of this process on FESA films requires the selective thermal degradation of the polymer into oligomers, combined with optimization of the solvent type and temperature of the metal complexation reaction. Resulting S-CNT array FET devices show that the electronic properties of pristine CNT are preserved through this process. Optical microscopy, UV-vis spectroscopy, and X-ray photoelectron spectroscopy (XPS) were used to characterize the quantitative polymer removal. We quantitatively describe the FET devices to analyze the fundamental characteristics of FETs (mobility (µ), on-conductance (Gon), and contact resistance (2Rc)) by comparing before and after polymer removal. The ability to completely remove the polymer wrapper in aligned CNT arrays without adversely affecting the device properties opens up applications beyond FETs into photovoltaics and biosensing.

16.
Langmuir ; 33(31): 7708-7714, 2017 08 08.
Article in English | MEDLINE | ID: mdl-28715637

ABSTRACT

Ionic layer epitaxy (ILE) has recently been developed as an effective strategy to synthesize nanometer thick 2D materials with a nonlayered crystal structure, such as ZnO. The packing density of the amphiphilic monolayer is believed to be a key parameter that controls the nanosheet nucleation and growth. In this work, we systematically investigated the growth behavior of single-crystalline ZnO nanosheets templated at the water-air interface by an anionic oleylsulfate monolayer with different packing densities. The thicknesses of ZnO nanosheets were tuned from one unit cell to four unit cells and exhibited good correlation with the width of Zn2+ ion concentration zone (the Stern layer) underneath the ionized surfactant monolayer. Further analysis of the nanosheet sizes and density revealed that the nanosheet growth was dominated by the steric hindrance from the surfactant monolayer at lower surface pressure, while the nucleation density became the dominating factor at higher surface pressure. The ZnO nanosheets exhibited a decreasing work function as the thickness reduced to a few unit cells. This research validated a critical hypothesis that the nanosheet growth is self-limited by the formation of a double layer of ionic precursors. This work will open up a new way toward controlled synthesis of novel 2D nanosheets from nonlayered materials with a thickness down to one unit cell.

17.
Langmuir ; 33(9): 2157-2168, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28170273

ABSTRACT

The structural configuration of molecules assembled at organic-inorganic interfaces within electronic materials strongly influences the functional electronic and vibrational properties relevant to applications ranging from energy storage to photovoltaics. Controlling and characterizing the structural state of an interface and its evolution under external stimuli is crucial both for the fundamental understanding of the factors influenced by molecular structure and for the development of methods for material synthesis. It has been challenging to create complete molecular monolayers that exhibit external reversible control of the structure and electronic configuration. We report a monolayer/inorganic interface consisting of an organic monolayer assembled on an oxide surface, exhibiting structural and electronic reconfiguration under ultraviolet illumination. The molecular monolayer is linked to the surface through a carboxylate link, with the backbone bearing an azobenzene functional group and the head group consisting of a rhenium-bipyridine group. Optical spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy, and X-ray reflectivity show that closely packed monolayers are formed from these molecules via the Langmuir-Blodgett technique. Reversible photoisomerization is observed in solution and in monolayers assembled on Si and quartz substrates. The reconfiguration of these monolayers provides additional means to control excitation and charge transfer processes that are important in applications in catalysis, molecular electronics, and solar energy conversion.

18.
ACS Nano ; 9(10): 10203-13, 2015 Oct 27.
Article in English | MEDLINE | ID: mdl-26348205

ABSTRACT

Conjugated polymers are among the most selective carbon nanotube sorting agents discovered and enable the isolation of ultrahigh purity semiconducting singled-walled carbon nanotubes (s-SWCNTs) from heterogeneous mixtures that contain problematic metallic nanotubes. The strong selectivity though highly desirable for sorting, also leads to irreversible adsorption of the polymer on the s-SWCNTs, limiting their electronic and optoelectronic properties. We demonstrate how changes in polymer backbone rigidity can trigger its release from the nanotube surface. To do so, we choose a model polymer, namely poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(6,60-(2,20-bipyridine))] (PFO-BPy), which provides ultrahigh selectivity for s-SWCNTs, which are useful specifically for FETs, and has the chemical functionality (BPy) to alter the rigidity using mild chemistry. Upon addition of Re(CO)5Cl to the solution of PFO-BPy wrapped s-SWCNTs, selective chelation with the BPy unit in the copolymer leads to the unwrapping of PFO-BPy. UV-vis, XPS, and Raman spectroscopy studies show that binding of the metal ligand complex to BPy triggers up to 85% removal of the PFO-BPy from arc-discharge s-SWCNTs (diameter = 1.3-1.7 nm) and up to 72% from CoMoCAT s-SWCNTs (diameter = 0.7-0.8 nm). Importantly, Raman studies show that the electronic structure of the s-SWCNTs is preserved through this process. The generalizability of this method is demonstrated with two other transition metal salts. Molecular dynamics simulations support our experimental findings that the complexation of BPy with Re(CO)5Cl in the PFO-BPy backbone induces a dramatic conformational change that leads to a dynamic unwrapping of the polymer off the nanotube yielding pristine s-SWCNTs.

19.
J Chem Phys ; 142(21): 212449, 2015 Jun 07.
Article in English | MEDLINE | ID: mdl-26049469

ABSTRACT

We report that a model dye, Re(CO)3(bypy)CO2H, aggregates into clusters on TiO2 nanoparticles regardless of our preparation conditions. Using two-dimensional infrared (2D IR) spectroscopy, we have identified characteristic frequencies of monomers, dimers, and trimers. A comparison of 2D IR spectra in solution versus those deposited on TiO2 shows that the propensity to dimerize in solution leads to higher dimer formation on TiO2, but that dimers are formed even if there are only monomers in solution. Aggregates cannot be washed off with standard protocols and are present even at submonolayer coverages. We observe cross peaks between aggregates of different sizes, primarily dimers and trimers, indicating that clusters consist of microdomains in close proximity. 2D IR spectroscopy is used to draw these conclusions from measurements of vibrational couplings, but if molecules are close enough to be vibrationally coupled, then they are also likely to be electronically coupled, which could alter charge transfer.

20.
ACS Nano ; 8(11): 11614-21, 2014 Nov 25.
Article in English | MEDLINE | ID: mdl-25383880

ABSTRACT

Challenges in eliminating metallic from semiconducting single-walled carbon nanotubes (SWCNTs) and in controlling their alignment have limited the development of high-performance SWCNT-based field-effect transistors (FETs). We recently pioneered an approach for depositing aligned arrays of ultra-high-purity semiconducting SWCNTs, isolated using polyfluorene derivatives, called dose-controlled floating evaporative self-assembly. Here, we tailor FETs fabricated from these arrays to achieve on-conductance (G(on)) per width and an on-off ratio (G(on)/G(off)) of 261 µS/µm and 2 × 10(5), respectively, for a channel length (L(ch)) of 240 nm and 116 µS/µm and 1 × 10(6), respectively, for an L(ch) of 1 µm. We demonstrate 1400× greater G(on)/G(off) than SWCNT FETs fabricated by other methods, at comparable G(on) per width of ∼250 µS/µm and 30-100× greater G(on) per width at comparable G(on)/G(off) of 10(5)-10(7). The average G(on) per tube reaches 5.7 ± 1.4 µS at a packing density of 35 tubes/µm for L(ch) in the range 160-240 nm, limited by contact resistance. These gains highlight the promise of using ultra-high-purity semiconducting SWCNTs with controlled alignment for next-generation semiconductor electronics.

SELECTION OF CITATIONS
SEARCH DETAIL