Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 577
Filter
1.
Nat Commun ; 15(1): 3795, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714679

ABSTRACT

The incidence of Lyme borreliosis has risen, accompanied by persistent symptoms. The innate immune system and related cytokines are crucial in the host response and symptom development. We characterized cytokine production capacity before and after antibiotic treatment in 1,060 Lyme borreliosis patients. We observed a negative correlation between antibody production and IL-10 responses, as well as increased IL-1Ra responses in patients with disseminated disease. Genome-wide mapping the cytokine production allowed us to identify 34 cytokine quantitative trait loci (cQTLs), with 31 novel ones. We pinpointed the causal variant at the TLR1-6-10 locus and validated the regulation of IL-1Ra responses at transcritpome level using an independent cohort. We found that cQTLs contribute to Lyme borreliosis susceptibility and are relevant to other immune-mediated diseases. Our findings improve the understanding of cytokine responses in Lyme borreliosis and provide a genetic map of immune function as an expanded resource.


Subject(s)
Cytokines , Lyme Disease , Quantitative Trait Loci , Lyme Disease/immunology , Lyme Disease/genetics , Lyme Disease/microbiology , Humans , Cytokines/genetics , Cytokines/metabolism , Male , Female , Interleukin-10/genetics , Adult , Genome-Wide Association Study , Middle Aged , Interleukin 1 Receptor Antagonist Protein/genetics , Borrelia burgdorferi/immunology , Borrelia burgdorferi/genetics , Anti-Bacterial Agents , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease , Aged
2.
iScience ; 27(4): 109356, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38510149

ABSTRACT

Familial Mediterranean fever (FMF) is a periodic fever syndrome caused by variation in MEFV. FMF is known for IL-1ß dysregulation, but the innate immune landscape of this disease has not been comprehensively described. Therefore, we studied circulating inflammatory proteins, and the function of monocytes and (albeit less extensively) neutrophils in treated FMF patients in remission. We found that monocyte IL-1ß and IL-6 production was enhanced upon stimulation, in concordance with alterations in the plasma inflammatory proteome. We did not observe changes in neutrophil functional assays. Subtle differences in chromatin accessibility and transcriptomics in our small patient cohort further argued for monocyte dysregulation. Together, these observations suggest that the MEFV-mutation-mediated primary immune dysregulation in monocytes leads to chronic inflammation that is subsequently associated with counterregulatory epigenetic/transcriptional changes reminiscent of tolerance. These data increase our understanding of the innate immune changes in FMF, aiding future management of chronic inflammation in these patients.

3.
BMC Infect Dis ; 24(1): 337, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38515037

ABSTRACT

BACKGROUND: Genetic variation underly inter-individual variation in host immune responses to infectious diseases, and may affect susceptibility or the course of signs and symptoms. METHODS: We performed genome-wide association studies in a prospective cohort of 1138 patients with physician-confirmed Lyme borreliosis (LB), the most common tick-borne disease in the Northern hemisphere caused by the bacterium Borrelia burgdorferi sensu lato. Genome-wide variants in LB patients-divided into a discovery and validation cohort-were compared to two healthy cohorts. Additionally, ex vivo monocyte-derived cytokine responses of peripheral blood mononuclear cells to several stimuli including Borrelia burgdorferi were performed in both LB patient and healthy control samples, as were stimulation experiments using mechanistic/mammalian target of rapamycin (mTOR) inhibitors. In addition, for LB patients, anti-Borrelia antibody responses were measured. Finally, in a subset of LB patients, gene expression was analysed using RNA-sequencing data from the ex vivo stimulation experiments. RESULTS: We identified a previously unknown genetic variant, rs1061632, that was associated with enhanced LB susceptibility. This polymorphism was an eQTL for KCTD20 and ETV7 genes, and its major risk allele was associated with upregulation of the mTOR pathway and cytokine responses, and lower anti-Borrelia antibody production. In addition, we replicated the recently reported SCGB1D2 locus that was suggested to have a protective effect on B. burgdorferi infection, and associated this locus with higher Borrelia burgdorferi antibody indexes and lower IL-10 responses. CONCLUSIONS: Susceptibility for LB was associated with higher anti-inflammatory responses and reduced anti-Borrelia antibody production, which in turn may negatively impact bacterial clearance. These findings provide important insights into the immunogenetic susceptibility for LB and may guide future studies on development of preventive or therapeutic measures. TRIAL REGISTRATION: The LymeProspect study was registered with the International Clinical Trials Registry Platform (NTR4998, registration date 2015-02-13).


Subject(s)
Borrelia burgdorferi Group , Borrelia burgdorferi , Borrelia , Lyme Disease , Humans , Genome-Wide Association Study , Prospective Studies , Leukocytes, Mononuclear , Disease Susceptibility , Lyme Disease/genetics , Lyme Disease/diagnosis , Borrelia burgdorferi/genetics , Cytokines/genetics , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/therapeutic use , Borrelia burgdorferi Group/genetics , Secretoglobins/genetics
4.
J Infect Dis ; 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38446996

ABSTRACT

The interaction between the Candida albicans cell wall and pattern recognition receptors is crucial for the initiation of host immune responses which, ultimately, contribute to the clearance of this pathogenic fungus. In the present study, we investigate the ability of C. albicans mannans to modulate immune response and induce innate immune memory (also termed trained immunity). Using mutants of C. albicans that are defective in, or lack mannosyl residues, we show that alterations in the mannosylation of the C. albicans cell wall affect the innate cytokine response and strongly reduce the secretion of T cell-derived cytokines. Subsequently, we demonstrate that the branching of N-linked mannan, but not O-linked mannan, is essential to potentiate the induction of trained immunity, a process mediated by Dectin-2. In conclusion, N-linked mannan is needed, in addition to ß-glucans, for an effective induction of trained immunity by C. albicans.

5.
Immunol Rev ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38551324

ABSTRACT

Over the past decade, compelling evidence has unveiled previously overlooked adaptive characteristics of innate immune cells. Beyond their traditional role in providing short, non-specific protection against pathogens, innate immune cells can acquire antigen-agnostic memory, exhibiting increased responsiveness to secondary stimulation. This long-term de-facto innate immune memory, also termed trained immunity, is mediated through extensive metabolic rewiring and epigenetic modifications. While the upregulation of trained immunity proves advantageous in countering immune paralysis, its overactivation contributes to the pathogenesis of autoinflammatory and autoimmune disorders. In this review, we present the latest advancements in the field of innate immune memory followed by a description of the fundamental mechanisms underpinning trained immunity generation and different cell types that mediate it. Furthermore, we explore its implications for various diseases and examine current limitations and its potential therapeutic targeting in immune-related disorders.

6.
Virulence ; 15(1): 2333367, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38515333

ABSTRACT

Our immune system possesses sophisticated mechanisms to cope with invading microorganisms, while pathogens evolve strategies to deal with threats imposed by host immunity. Human plasma protein α1-antitrypsin (AAT) exhibits pleiotropic immune-modulating properties by both preventing immunopathology and improving antimicrobial host defence. Genetic associations suggested a role for AAT in candidemia, the most frequent fungal blood stream infection in intensive care units, yet little is known about how AAT influences interactions between Candida albicans and the immune system. Here, we show that AAT differentially impacts fungal killing by innate phagocytes. We observed that AAT induces fungal transcriptional reprogramming, associated with cell wall remodelling and downregulation of filamentation repressors. At low concentrations, the cell-wall remodelling induced by AAT increased immunogenic ß-glucan exposure and consequently improved fungal clearance by monocytes. Contrastingly, higher AAT concentrations led to excessive C. albicans filamentation and thus promoted fungal immune escape from monocytes and macrophages. This underscores that fungal adaptations to the host protein AAT can differentially define the outcome of encounters with innate immune cells, either contributing to improved immune recognition or fungal immune escape.


Subject(s)
Candida albicans , beta-Glucans , Humans , Candida albicans/metabolism , Host-Pathogen Interactions , Macrophages/microbiology , Monocytes/microbiology , beta-Glucans/metabolism
7.
Cell Rep ; 43(3): 113932, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38457336

ABSTRACT

Innate immune cells can undergo long-term functional reprogramming after certain infections, a process called trained immunity (TI). Here, we focus on antigens of Leishmania braziliensis, which induced anti-tumor effects via trained immunity in human monocytes. We reveal that monocytes exposed to promastigote antigens of L. braziliensis develop an enhanced response to subsequent exposure to Toll-like receptor (TLR)2 or TLR4 ligands. Mechanistically, the induction of TI in monocytes by L. braziliensis is mediated by multiple pattern recognition receptors, changes in metabolism, and increased deposition of H3K4me3 at the promoter regions of immune genes. The administration of L. braziliensis exerts potent anti-tumor capabilities by delaying tumor growth and prolonging survival of mice with non-Hodgkin lymphoma. Our work reveals mechanisms of TI induced by L. braziliensis in vitro and identifies its potential for cancer immunotherapy.


Subject(s)
Leishmania braziliensis , Leishmaniasis, Cutaneous , Neoplasms , Humans , Mice , Animals , Monocytes
8.
Front Immunol ; 15: 1323333, 2024.
Article in English | MEDLINE | ID: mdl-38415247

ABSTRACT

Candida albicans cell wall component ß-glucan has been extensively studied for its ability to induce epigenetic and functional reprogramming of innate immune cells, a process termed trained immunity. We show that a high-complexity blend of two individual ß-glucans from Saccharomyces cerevisiae possesses strong bioactivity, resulting in an enhanced trained innate immune response by human primary monocytes. The training required the Dectin-1/CR3, TLR4, and MMR receptors, as well as the Raf-1, Syk, and PI3K downstream signaling molecules. By activating multiple receptors and downstream signaling pathways, the components of this ß-glucan preparation are able to act synergistically, causing a robust secondary response upon an unrelated challenge. In in-vivo murine models of melanoma and bladder cell carcinoma, pre-treatment of mice with the ß-glucan preparation led to a significant reduction in tumor growth. These insights may aid in the development of future therapies based on ß-glucan structures that induce an effective trained immunity response.


Subject(s)
Saccharomyces cerevisiae , beta-Glucans , Humans , Animals , Mice , Trained Immunity , beta-Glucans/pharmacology , Monocytes , Signal Transduction
9.
Sci Rep ; 14(1): 3565, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38347000

ABSTRACT

Gout is a common autoinflammatory joint diseases characterized by deposition of monosodium urate (MSU) crystals which trigger an innate immune response mediated by inflammatory cytokines. IGF1R is one of the loci associated with both urate levels and gout susceptibility in GWAS to date, and IGF-1-IGF-1R signaling is implicated in urate control. We investigate the role of IGF-1/IGF1R signaling in the context of gouty inflammation. Also, we test the gout and urate-associated IGF1R rs6598541 polymorphism for association with the inflammatory capacity of mononuclear cells. For this, freshly isolated human peripheral blood mononuclear cells (PBMCs) were exposed to recombinant IGF-1 or anti-IGF1R neutralizing antibody in the presence or absence of solubilized urate, stimulated with LPS/MSU crystals. Also, the association of rs6598541 with IGF1R and protein expression and with ex vivo cytokine production levels after stimulation with gout specific stimuli was tested. Urate exposure was not associated with IGF1R expression in vitro or in vivo. Modulation of IGF1R did not alter urate-induced inflammation. Developing urate-induced trained immunity in vitro was not influenced in cells challenged with IGF-1 recombinant protein. Moreover, the IGF1R rs6598541 SNP was not associated with cytokine production. Our results indicate that urate-induced inflammatory priming is not regulated by IGF-1/IGF1R signaling in vitro. IGF1R rs6598541 status was not asociated with IGF1R expression or cytokine production in primary human PBMCs. This study suggests that the role of IGF1R in gout is tissue-specific and may be more relevant in the control of urate levels rather than in inflammatory signaling in gout.


Subject(s)
Gout , Hyperuricemia , Humans , Uric Acid/metabolism , Hyperuricemia/complications , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Leukocytes, Mononuclear/metabolism , Genome-Wide Association Study , Gout/genetics , Gout/complications , Inflammation/metabolism , Cytokines/metabolism , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism
10.
Joint Bone Spine ; 91(3): 105698, 2024 May.
Article in English | MEDLINE | ID: mdl-38309518

ABSTRACT

OBJECTIVE: Hyperuricaemia is necessary for gout. High urate concentrations have been linked to inflammation in mononuclear cells. Here, we explore the role of the suppressor of cytokine signaling 3 (SOCS3) in urate-induced inflammation. METHODS: Peripheral blood mononuclear cells (PBMCs) from gout patients, hyperuricemic and normouricemic individuals were cultured for 24h with varying concentrations of soluble urate, followed by 24h restimulation with lipopolysaccharides (LPS)±monosodium urate (MSU) crystals. Transcriptomic profiling was performed using RNA-Sequencing. DNA methylation was assessed using Illumina Infinium® MethylationEPIC BeadChip system (EPIC array). Phosphorylation of signal transducer and activator of transcription 3 (STAT3) was determined by flow cytometry. Cytokine responses were also assessed in PBMCs from patients with JAK2 V617F tyrosine kinase mutation. RESULTS: PBMCs pre-treated with urate produced more interleukin-1beta (IL-1ß) and interleukin-6 (IL-6) and less interleukin-1 receptor anatagonist (IL-1Ra) after LPS simulation. In vitro, urate treatment enhanced SOCS3 expression in control monocytes but no DNA methylation changes were observed at the SOCS3 gene. A dose-dependent reduction in phosphorylated STAT3 concomitant with a decrease in IL-1Ra was observed with increasing concentrations of urate. PBMCs with constitutively activated STAT3 (JAK2 V617F mutation) could not be primed by urate. CONCLUSION: In vitro, urate exposure increased SOCS3 expression, while urate priming, and subsequent stimulation resulted in decreased STAT3 phosphorylation and IL-1Ra production. There was no evidence that DNA methylation constitutes a regulatory mechanism of SOCS3. Elevated SOCS3 and reduced pSTAT3 could play a role in urate-induced hyperinflammation since urate priming had no effect in PBMCs from patients with constitutively activated STAT3.


Subject(s)
Cytokines , Gout , STAT3 Transcription Factor , Suppressor of Cytokine Signaling 3 Protein , Uric Acid , Humans , Suppressor of Cytokine Signaling 3 Protein/metabolism , Suppressor of Cytokine Signaling 3 Protein/genetics , Uric Acid/pharmacology , STAT3 Transcription Factor/metabolism , Cytokines/metabolism , Gout/genetics , Gout/metabolism , Cells, Cultured , Male , Myeloid Cells/metabolism , Myeloid Cells/drug effects , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/drug effects , Hyperuricemia/metabolism , Female , Middle Aged , DNA Methylation , Janus Kinase 2/metabolism
11.
Mech Ageing Dev ; 218: 111916, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38364983

ABSTRACT

In old age, impaired immunity causes high susceptibility to infections and cancer, higher morbidity and mortality, and poorer vaccination efficiency. Many factors, such as genetics, diet, and lifestyle, impact aging. This study aimed to investigate how immune responses change with age in healthy Dutch and Tanzanian individuals and identify common metabolites associated with an aged immune profile. We performed untargeted metabolomics from plasma to identify age-associated metabolites, and we correlated their concentrations with ex-vivo cytokine production by immune cells, DNA methylation-based epigenetic aging, and telomere length. Innate immune responses were impacted differently by age in Dutch and Tanzanian cohorts. Age-related decline in steroid hormone precursors common in both populations was associated with higher systemic inflammation and lower cytokine responses. Hippurate and 2-phenylacetamide, commonly more abundant in older individuals, were negatively correlated with cytokine responses and telomere length and positively correlated with epigenetic aging. Lastly, we identified several metabolites that might contribute to the stronger decline in innate immunity with age in Tanzanians. The shared metabolomic signatures of the two cohorts suggest common mechanisms of immune aging, revealing metabolites with potential contributions. These findings also reflect genetic or environmental effects on circulating metabolites that modulate immune responses.


Subject(s)
Aging , East African People , European People , Aged , Humans , Cytokines , Immunity, Innate , Metabolome
12.
Sci Rep ; 14(1): 3911, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38366085

ABSTRACT

The lack of standardization in the methods of DNA extraction from fecal samples represents the major source of experimental variation in the microbiome research field. In this study, we aimed to compare the metagenomic profiles and microbiome-phenotype associations obtained by applying two commercially available DNA extraction kits: the AllPrep DNA/RNA Mini Kit (APK) and the QIAamp Fast DNA Stool Mini Kit (FSK). Using metagenomic sequencing data available from 745 paired fecal samples from two independent population cohorts, Lifelines-DEEP (LLD, n = 292) and the 500 Functional Genomics project (500FG, n = 453), we confirmed significant differences in DNA yield and the recovered microbial communities between protocols, with the APK method resulting in a higher DNA concentration and microbial diversity. Further, we observed a massive difference in bacterial relative abundances at species-level between the APK and the FSK protocols, with > 75% of species differentially abundant between protocols in both cohorts. Specifically, comparison with a standard mock community revealed that the APK method provided higher accuracy in the recovery of microbial relative abundances, with the absence of a bead-beating step in the FSK protocol causing an underrepresentation of gram-positive bacteria. This heterogeneity in the recovered microbial composition led to remarkable differences in the association with anthropometric and lifestyle phenotypes. The results of this study further reinforce that the choice of DNA extraction method impacts the metagenomic profile of human gut microbiota and highlight the importance of harmonizing protocols in microbiome studies.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , DNA, Bacterial/genetics , DNA, Bacterial/analysis , RNA, Ribosomal, 16S/genetics , DNA , Microbiota/genetics , Gastrointestinal Microbiome/genetics , Sequence Analysis, DNA , Feces/microbiology , Metagenomics/methods
13.
BMC Genomics ; 25(1): 154, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38326779

ABSTRACT

BACKGROUND: Significant differences in immune responses, prevalence or susceptibility of diseases and treatment responses have been described between males and females. Despite this, sex-differentiation analysis of the genetic architecture of inflammatory proteins is largely unexplored. We performed sex-stratified meta-analysis after protein quantitative trait loci (pQTL) mapping using inflammatory biomarkers profiled using targeted proteomics (Olink inflammatory panel) of two population-based cohorts of Europeans. RESULTS: Even though, around 67% of the pQTLs demonstrated shared effect between sexes, colocalization analysis identified two loci in the males (LINC01135 and ITGAV) and three loci (CNOT10, SRD5A2, and LILRB5) in the females with evidence of sex-dependent modulation by pQTL variants. Furthermore, we identified pathways with relevant functions in the sex-biased pQTL variants. We also showed through cross-validation that the sex-specific pQTLs are linked with sex-specific phenotypic traits. CONCLUSION: Our study demonstrates the relevance of genetic sex-stratified analysis in the context of genetic dissection of protein abundances among individuals and reveals that, sex-specific pQTLs might mediate sex-linked phenotypes. Identification of sex-specific pQTLs associated with sex-biased diseases can help realize the promise of individualized treatment.


Subject(s)
Proteins , Quantitative Trait Loci , Male , Female , Humans , Proteins/genetics , Phenotype , Biomarkers , Gene Expression Regulation , Genome-Wide Association Study , Membrane Proteins/genetics , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/genetics , Receptors, Immunologic/genetics , Antigens, CD
14.
J Neuromuscul Dis ; 11(2): 327-347, 2024.
Article in English | MEDLINE | ID: mdl-38250782

ABSTRACT

Background: FSHD is a highly prevalent inherited myopathy with a still poorly understood pathology. Objective: To investigate whether proinflammatory cytokines are associated with FSHD and which specific innate immune cells are involved in its pathology. Methods: First, we measured circulating cytokines in serum samples: IL-6 (FSHD, n = 150; HC, n = 98); TNF (FSHD, n = 150; HC, n = 59); IL-1α (FSHD, n = 150; HC, n = 66); IL-1ß (FSHD, n = 150; HC, n = 98); MCP-1 (FSHD, n = 14; HC, n = 14); VEGF-A (FSHD, n = 14; HC, n = 14). Second, we tested trained immunity in monocytes (FSHD, n = 15; HC, n = 15) and NK cells (FSHD, n = 11; HC, n = 11). Next, we explored the cytokine production capacity of NK cells in response to different stimuli (FSHD, n = 39; HC, n = 22). Lastly, we evaluated the cytokine production of ex vivo stimulated MRI guided inflamed (TIRM+) and paired MRI guided non inflamed (TIRM-) muscle biopsies of 21 patients and of 8 HC muscle biopsies. Results: We included a total of 190 FSHD patients (N = 190, 48±14 years, 49% men) and of 135 HC (N = 135, 44±15 years, 47% men). We found that FSHD patients had higher concentrations of IL-6 and TNF measured (a) in the circulation, (b) after ex-vivo stimulation of NK cells, and (c) in muscle specimens. Besides, IL-6 circulating concentrations, as well as its production by NK cells and IL-6 content of FSHD muscle specimens, showed a mild correlation with disease duration, disease severity, and muscle weakness. Conclusion: These results show that IL-6 and TNF may contribute to FSHD pathology and suggest novel therapeutic targets. Additionally, the activation of NK cells in FSHD may be a novel pathway contributing to FSHD pathology.


Subject(s)
Muscular Dystrophy, Facioscapulohumeral , Female , Humans , Male , Biomarkers , Biopsy , Interleukin-6 , Muscle Weakness , Muscular Dystrophy, Facioscapulohumeral/pathology
15.
Acta Neurol Belg ; 124(2): 559-566, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38218752

ABSTRACT

BACKGROUND: Patients with facioscapulohumeral dystrophy (FSHD) suffer from slowly progressive muscle weakness. Approximately 20% of FSHD patients end up wheelchair-dependent. FSHD patients benefit from physical activity to maintain their muscle strength as much as possible. The impact of the COVID-19 pandemic on the health of FSHD patients was unknown. OBJECTIVE: This study assessed changes in daily care received, perceived psychosocial stress, and worsening of FSHD complaints in 2020. Furthermore, we compared COVID-19 infection incidence and severity of symptoms between FSHD patients and non-FSHD housemates. METHODS: Three online survey rounds were sent out to all adult participants of the Dutch FSHD registry regarding daily care received, perceived psychosocial stress, COVID-19 infection rate, and COVID-19 symptoms severity. They also included COVID-19-related questions regarding the participants' housemates, which served as control group. RESULTS: Participation rate was 210 (61%), 186 (54%), and 205 (59%) for survey 1, 2, and 3, respectively. Care reduction was reported by 42.7%, 40%, and 28.8% of the participants in the respective surveys. Perceived psychosocial stress increased in 44%, 30%, and 40% of the participants. Compared to the 197 non-FSHD housemates, the 213 FSHD patients reported more possibly COVID-19-related symptoms (27% vs. 39%, p = 0.017) of mostly minimal severity (63%). No difference in (possible) COVID-19 infection incidence rates was found (2.0% vs. 2.8%, p = 0.527). CONCLUSIONS: The COVID-19 pandemic negatively impacted care received and increased perceived psychosocial stress in FSHD patients. However, COVID-19 infection incidence in FSHD patients was similar to their non-FSHD housemates.


Subject(s)
COVID-19 , Muscular Dystrophy, Facioscapulohumeral , Adult , Humans , Muscular Dystrophy, Facioscapulohumeral/epidemiology , Muscular Dystrophy, Facioscapulohumeral/diagnosis , Muscular Dystrophy, Facioscapulohumeral/psychology , Netherlands/epidemiology , Pandemics , COVID-19/epidemiology , Surveys and Questionnaires
16.
J Am Heart Assoc ; 13(2): e031665, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38214284

ABSTRACT

BACKGROUND: Obesity is accompanied by dysregulated inflammation, which can contribute to vasculometabolic complications including metabolic syndrome and atherosclerosis. Recently, clonal hematopoiesis of indeterminate potential (CHIP) has emerged as a risk factor for cardiovascular diseases. We aimed to determine how CHIP is related to immune cell function, systemic inflammation, and vasculometabolic complications in obese individuals. METHODS AND RESULTS: Two hundred ninety-seven individuals with overweight and obesity, between the ages of 54 and 81 years, were recruited in a cross-sectional study. Clonal hematopoiesis driver mutations (CHDMs) were identified with an ultrasensitive targeted assay. Assessment of carotid artery atherosclerosis was performed with ultrasound. Detailed immunological parameters, including cytokine production capacity of peripheral blood mononuclear cells, and targeted plasma proteomics analysis, were studied. Adipose tissue inflammation was determined in subcutaneous fat biopsies. Individuals with CHIP had higher concentrations of circulating IL (interleukin)-6. Total number of leukocytes and neutrophils were higher in individuals with CHIP. In contrast, ex vivo cytokine production capacity of peripheral blood mononuclear cells was significantly lower in individuals with CHIP. Sex-stratified analysis showed that men with CHDMs had significantly higher leukocyte and neutrophil counts, and ex vivo cytokine production capacity was lower in women with CHDMs. Surprisingly, the presence of atherosclerotic plaques was significantly lower in individuals with CHDMs. There was no relation between CHIP and metabolic syndrome. CONCLUSIONS: In individuals with overweight or obesity, CHDMs are not associated with vasculometabolic complications, but rather with a lower presence of carotid plaques. CHDMs associate with increased circulating inflammatory markers and leukocyte numbers, but a lower peripheral blood mononuclear cell cytokine production capacity.


Subject(s)
Atherosclerosis , Metabolic Syndrome , Male , Humans , Female , Middle Aged , Aged , Aged, 80 and over , Clonal Hematopoiesis , Metabolic Syndrome/complications , Metabolic Syndrome/genetics , Leukocytes, Mononuclear/metabolism , Cross-Sectional Studies , Overweight/metabolism , Hematopoiesis/genetics , Obesity/complications , Obesity/genetics , Inflammation/metabolism , Atherosclerosis/metabolism , Interleukin-6/metabolism , Mutation
17.
Int J Cardiol ; 400: 131780, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38218249

ABSTRACT

BACKGROUND: Traditional risk stratification modestly predicts adverse cardiovascular events in patients with coronary artery disease (CAD). Our aim was to investigate the association between monocyte subsets numbers and function, and the first major adverse cardiovascular event (MACE) in patients with symptomatic stable CAD and angiographically documented coronary atherosclerosis. METHODS: Patients with stable CAD were screened for inclusion. Using flow cytometry, we identified classical, intermediate, and non-classical monocyte subsets and we assessed cytokine production capacity after ex-vivo stimulation of peripheral blood mononuclear cells. Clinical follow-up was performed after four years. The endpoint was the composite of cardiovascular death, acute myocardial infarction, and ischemic stroke. RESULTS: A cohort of 229 patients was recruited. The percentage of intermediate monocytes was positively associated with adverse cardiovascular events at follow-up (HR 1.09; 95%CI 1.02-1.16; p = 0.006), while the percentage of classical monocytes was identified as a protective factor for adverse outcomes (HR 0.96; 95%CI 0.94-0.99; p = 0.02). The percentage of intermediate monocytes remained independently associated with outcomes after adjusting for age, systolic blood pressure, and left ventricular ejection fraction (HR 1.07; 95% CI 1.01-1.14; p = 0.04). Several correlations were identified between monocyte subsets and stimulated cytokine production, but cytokine production capacity was not associated with adverse outcomes. CONCLUSIONS: In patients with stable CAD, intermediate monocytes were associated with MACE at follow-up. The association was not due to an increased cytokine production capacity. Novel biomarkers could improve risk stratification in patients with stable CAD and could represent new pharmacological targets against atherosclerosis progression.


Subject(s)
Coronary Artery Disease , Humans , Coronary Artery Disease/diagnostic imaging , Monocytes , Leukocytes, Mononuclear , Stroke Volume , Ventricular Function, Left , Cytokines , Risk Factors
18.
Cytokine ; 175: 156502, 2024 03.
Article in English | MEDLINE | ID: mdl-38237388

ABSTRACT

BACKGROUND: Hyperuricemia has been shown to be an inducer of pro-inflammatory mediators by human primary monocytes. To study the deleterious effects of hyperuricemia, a reliable and stable in vitro model using soluble urate is needed. One recent report showed different urate-dissolving methods resulted in either pro-inflammatory or anti-inflammatory properties. The aim of this study was to compare the effect of two methods of dissolving urate on both primary human peripheral blood mononuclear cells (PBMCs) and THP-1 cells. The two methods tested were 'pre-warming' and 'dissolving with NaOH'. METHODS: Primary human PBMCs and THP-1 cells were exposed to urate solutions, prepared using the two methodologies: pre-warming and dissolving with NaOH. Afterwards, cells were stimulated with various stimuli, followed by the measurement of the inflammatory mediators IL-1ß, IL-6, IL-1Ra, TNF, IL-8, and MCP-1. RESULTS: In PBMCs, we observed an overall pro-inflammatory effect of urate, both in the pre-warming and the NaOH dissolving method. A similar pro-inflammatory effect was seen in THP-1 cells for both dissolving methods after restimulation. However, THP-1 cells exhibited pro-inflammatory profile with exposure to urate alone without restimulation. We did not find MSU crystals in our cellular assays. CONCLUSIONS: Overall, the urate dissolving methods do not have critical impact on its inflammatory properties. Soluble urate prepared using either of the two methods showed mostly pro-inflammatory effects on human primary PBMCs and monocytic cell line THP-1. However, human primary PBMCs and the THP-1 differ in their response to soluble urate without restimulation.


Subject(s)
Hyperuricemia , Uric Acid , Humans , Uric Acid/pharmacology , Uric Acid/metabolism , Hyperuricemia/metabolism , Leukocytes, Mononuclear/metabolism , Sodium Hydroxide/metabolism , Sodium Hydroxide/pharmacology , Monocytes , Inflammation Mediators/metabolism
19.
Mycoses ; 67(1)2024 Jan.
Article in English | MEDLINE | ID: mdl-38282360

ABSTRACT

Fungal skin infections are distributed worldwide and can be associated with economic and social traits. The immune response related to skin cells is complex and its understanding is essential to the comprehension of each cell's role and the discovery of treatment alternatives. The first studies of trained immunity (TI) described the ability of monocytes, macrophages and natural killer (NK) cells to develop a memory-like response. However, the duration of TI does not reflect the shorter lifespan of these cells. These conclusions supported later studies showing that TI can be observed in stem and haematopoietic cells and, more recently, also in non-immune skin cells such as fibroblasts, highlighting the importance of resident cells in response to skin disorders. Besides, the participation of less studied proinflammatory cytokines in the skin immune response, such as IL-36γ, shed light into a new possibility of inflammatory pathway blockade by drugs. In this review, we will discuss the skin immune response associated with fungal infections, the role of TI in skin and clinical evidence supporting opportunities and challenges of TI and other inflammatory responses in the pathogenesis of fungal skin infections.


Subject(s)
Mycoses , Trained Immunity , Humans , Immunity, Innate , Macrophages , Monocytes
20.
Immunity ; 57(1): 171-187.e14, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38198850

ABSTRACT

Immune responses are tightly regulated yet highly variable between individuals. To investigate human population variation of trained immunity, we immunized healthy individuals with Bacillus Calmette-Guérin (BCG). This live-attenuated vaccine induces not only an adaptive immune response against tuberculosis but also triggers innate immune activation and memory that are indicative of trained immunity. We established personal immune profiles and chromatin accessibility maps over a 90-day time course of BCG vaccination in 323 individuals. Our analysis uncovered genetic and epigenetic predictors of baseline immunity and immune response. BCG vaccination enhanced the innate immune response specifically in individuals with a dormant immune state at baseline, rather than providing a general boost of innate immunity. This study advances our understanding of BCG's heterologous immune-stimulatory effects and trained immunity in humans. Furthermore, it highlights the value of epigenetic cell states for connecting immune function with genotype and the environment.


Subject(s)
BCG Vaccine , Trained Immunity , Humans , Multiomics , Vaccination , Epigenesis, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...