Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Vector Ecol ; 35(1): 124-39, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20618658

ABSTRACT

Lyme disease is reported across Canada, but pinpointing the source of infection has been problematic. In this three-year, bird-tick-pathogen study (2004-2006), 366 ticks representing 12 species were collected from 151 songbirds (31 passerine species/subspecies) at 16 locations Canada-wide. Of the 167 ticks/pools tested, 19 (11.4%) were infected with Borrelia burgdorferi sensu lato (s.l.). Sequencing of the rrf-rrl intergenic spacer gene revealed four Borrelia genotypes: B. burgdorferi sensu stricto (s.s.) and three novel genotypes (BC genotype 1, BC genotype 2, BC genotype 3). All four genotypes were detected in spirochete-infected Ixodes auritulus (females, nymphs, larvae) suggesting this tick species is a vector for B. burgdorferi s.l. We provide first-time records for: ticks in the Yukon (north of 60 degrees latitude), northernmost collection of Amblyomma americanum in North America, and Amblyomma imitator in Canada. First reports of bird-derived ticks infected with B. burgdorferi s.l. include: live culture of spirochetes from Ixodes pacificus (nymph) plus detection in I. auritulus nymphs, Ixodes scapularis in New Brunswick, and an I. scapularis larva in Canada. We provide the first account of B. burgdorferi s. l. in an Ixodes muris tick collected from a songbird anywhere. Congruent with previous data for the American Robin, we suggest that the Common Yellowthroat, Golden-crowned Sparrow, Song Sparrow, and Swainson's Thrush are reservoir-competent hosts. Song Sparrows, the predominant hosts, were parasitized by I. auritulus harboring all four Borrelia genotypes. Our results show that songbirds import B. burgdorferi s.l.-infected ticks into Canada. Bird-feeding I. scapularis subadults were infected with Lyme spirochetes during both spring and fall migration in eastern Canada. Because songbirds disperse millions of infected ticks across Canada, people and domestic animals contract Lyme disease outside of the known and expected range.


Subject(s)
Borrelia burgdorferi/growth & development , Lyme Disease/microbiology , Ticks/microbiology , Animals , Borrelia burgdorferi/classification , Borrelia burgdorferi/genetics , Canada , Genotype , Lyme Disease/transmission , Songbirds/parasitology , Ticks/growth & development
2.
J Vector Ecol ; 33(1): 64-9, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18697308

ABSTRACT

Borrelia burgdorferi sensu stricto (s.s.) was isolated from questing adult Ixodes scapularis Say ticks collected from Turkey Point Provincial Park (TPPP), Ontario, Canada during 2005-2006. DNA from ten (67%) of 15 pools of ticks was confirmed positive for B. burgdorferi s.s. using polymerase chain reaction (PCR) by targeting the rrf (5S)-rrl (23S) intergenic spacer region and OspA genes. This significant infection rate indicates an accelerated development of B. burgdorferi s.s. in TPPP, because this pathogen was not detected five years previously during sampling of the three motile life stages of I. scapularis. Our study provides the initial report of the presence of B. burgdorferi s.s. in TPPP, which is now endemic for Lyme disease. Ultimately, people and domestic animals are at risk of contracting Lyme disease when they frequent this park.


Subject(s)
Borrelia burgdorferi/growth & development , Insect Vectors/microbiology , Ixodes/microbiology , Lyme Disease/microbiology , Animals , Antigens, Surface/genetics , Bacterial Outer Membrane Proteins/genetics , Bacterial Vaccines/genetics , Base Sequence , Borrelia burgdorferi/classification , Borrelia burgdorferi/genetics , DNA, Intergenic/genetics , Female , Humans , Lipoproteins/genetics , Lyme Disease/transmission , Male , Molecular Sequence Data , Ontario , Polymerase Chain Reaction , Sequence Homology, Nucleic Acid
3.
J Clin Microbiol ; 42(2): 841-3, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14766868

ABSTRACT

We report on the use of West Nile virus Armored RNA as an internal positive control (IPC) for the extraction and reverse transcription-PCR (RT-PCR) of RNA extracted from field-collected mosquitoes and on a multiplex real-time Taqman RT-PCR to simultaneously detect the 3' noncoding region of West Nile virus and the West Nile virus NS5-2 region comprising the IPC. Mosquito pools from the province of British Columbia, Canada (n = 635), were tested in duplicate and found to be negative for West Nile virus and positive for the IPC. Known West Nile virus-positive supernatants from mosquito pools from the provinces of Alberta and Manitoba were tested in duplicate and found to be positive for both regions of the West Nile virus genome. The mean cycle threshold (Ct) value for the IPC in batch extraction controls +/- 2 standard deviations was found to be 36.43 +/- 1.78 cycles. IPCs of 98.4% (624) of West Nile virus-negative pools fell within this range, indicating the reproducibility of RNA extraction and RT-PCR for pools varying in mosquito genus and number. A comparison of mosquito pool genera revealed no significant genus effect on the Ct value of the IPC. The incorporation of West Nile virus Armored RNA as an IPC allows monitoring of RNA extraction and RT-PCR and detection of false-negative results due to failures in these processes or to PCR inhibition, respectively.


Subject(s)
Culicidae/virology , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction/methods , West Nile virus/genetics , Animals , Base Sequence , DNA Probes , Molecular Sequence Data , RNA, Viral/isolation & purification , Reference Values , West Nile virus/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...