Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
medRxiv ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38746197

ABSTRACT

Background: PRKN biallelic pathogenic variants are the most common cause of autosomal recessive early-onset Parkinson's disease (PD). However, the variants responsible for suspected PRKN- PD individuals are not always identified with standard genetic testing. Objectives: Identify the genetic cause in two siblings with a PRKN -PD phenotype using long-read sequencing (LRS). Methods: The genetic investigation involved standard testing using successively multiple ligation probe amplification (MLPA), Sanger sequencing, targeted sequencing, whole-exome sequencing and LRS. Results: MLPA and targeted sequencing identified one copy of exon four in PRKN but no other variants were identified. Subsequently, LRS unveiled a large deletion encompassing exon 3 to 4 on one allele and a duplication of exon 3 on the second allele; explaining the siblings' phenotype. MLPA could not identify the balanced rearrangement of exon 3. Conclusions: This study highlights the potential utility of long-read sequencing in the context of unsolved typical PRKN- PD individuals.

3.
Am J Hum Genet ; 111(5): 913-926, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38626762

ABSTRACT

Expanded CAG repeats in coding regions of different genes are the most common cause of dominantly inherited spinocerebellar ataxias (SCAs). These repeats are unstable through the germline, and larger repeats lead to earlier onset. We measured somatic expansion in blood samples collected from 30 SCA1, 50 SCA2, 74 SCA3, and 30 SCA7 individuals over a mean interval of 8.5 years, along with postmortem tissues and fetal tissues from SCA1, SCA3, and SCA7 individuals to examine somatic expansion at different stages of life. We showed that somatic mosaicism in the blood increases over time. Expansion levels are significantly different among SCAs and correlate with CAG repeat lengths. The level of expansion is greater in individuals with SCA7 who manifest disease compared to that of those who do not yet display symptoms. Brain tissues from SCA individuals have larger expansions compared to the blood. The cerebellum has the lowest mosaicism among the studied brain regions, along with a high expression of ATXNs and DNA repair genes. This was the opposite in cortices, with the highest mosaicism and lower expression of ATXNs and DNA repair genes. Fetal cortices did not show repeat instability. This study shows that CAG repeats are increasingly unstable during life in the blood and the brain of SCA individuals, with gene- and tissue-specific patterns.


Subject(s)
Mosaicism , Spinocerebellar Ataxias , Trinucleotide Repeat Expansion , Humans , Spinocerebellar Ataxias/genetics , Trinucleotide Repeat Expansion/genetics , Female , Male , Adult , Middle Aged , Cerebellum/metabolism , Cerebellum/pathology , Aged , Brain/metabolism , Brain/pathology , Ataxin-1/genetics
4.
Eur J Obstet Gynecol Reprod Biol ; 297: 187-196, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677096

ABSTRACT

OBJECTIVE: Patients with superficial peritoneal endometriosis (SPE) present with symptoms suggestive of endometriosis but clinical and imaging exams are inconclusive. Consequently, laparoscopy is usually necessary to confirm diagnosis. The present study aimed to evaluate the accuracy of microRNAs (miRNAs) to diagnose patients with SPE from the ENDOmiARN cohort STUDY DESIGN: This prospective study (NCT04728152) included 200 saliva samples obtained between January and June 2021 from women with pelvic pain suggestive of endometriosis. All patients underwent either laparoscopy and/or MRI to confirm the presence of endometriosis. Among the patients with endometriosis, two groups were defined: an SPE phenotype group of patients with peritoneal lesions only, and a non-SPE control group of patients with other endometriosis phenotypes (endometrioma and/or deep endometriosis). Data analysis consisted of two parts: (i) identification of a set of miRNA biomarkers using next-generation sequencing (NGS), and (ii) development of a saliva-based miRNA signature for the SPE phenotype in patients with endometriosis based on a Random Forest (RF) model. RESULTS: Among the 153 patients with confirmed endometriosis, 10.5 % (n = 16) had an SPE phenotype. Of the 2633 known miRNAs, the feature selection method generated a signature of 89 miRNAs of the SPE phenotype. After validation, the best model, representing the most accurate signature had a 100 % sensitivity, specificity, and AUC. CONCLUSION: This signature could constitute a new diagnostic strategy to detect the SPE phenotype based on a simple biological test and render diagnostic laparoscopy obsolete. PRéCIS: We generated a saliva-based signature to identify patients with superficial peritoneal endometriosis which is the most challenging form of endometriosis to diagnose and which is often either misdiagnosed or requires invasive laparoscopy.


Subject(s)
Endometriosis , MicroRNAs , Phenotype , Saliva , Humans , Female , Endometriosis/diagnosis , Endometriosis/genetics , Adult , MicroRNAs/metabolism , MicroRNAs/analysis , MicroRNAs/genetics , Saliva/chemistry , Prospective Studies , Peritoneal Diseases/diagnosis , Peritoneal Diseases/genetics , Peritoneal Diseases/metabolism , Biomarkers/metabolism , Biomarkers/analysis , Sensitivity and Specificity
5.
EBioMedicine ; 99: 104931, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38150853

ABSTRACT

BACKGROUND: SCA27B caused by FGF14 intronic heterozygous GAA expansions with at least 250 repeats accounts for 10-60% of cases with unresolved cerebellar ataxia. We aimed to assess the size and frequency of FGF14 expanded alleles in individuals with cerebellar ataxia as compared with controls and to characterize genetic and clinical variability. METHODS: We sized this repeat in 1876 individuals from France sampled for research purposes in this cross-sectional study: 845 index cases with cerebellar ataxia and 324 affected relatives, 475 controls, as well as 119 cases with spastic paraplegia, and 113 with familial essential tremor. FINDINGS: A higher frequency of expanded allele carriers in index cases with ataxia was significant only above 300 GAA repeats (10.1%, n = 85) compared with controls (1.1%, n = 5) (p < 0.0001) whereas GAA250-299 alleles were detected in 1.7% of both groups. Eight of 14 index cases with GAA250-299 repeats had other causal pathogenic variants (4/14) and/or discordance of co-segregation (5/14), arguing against GAA causality. We compared the clinical signs in 127 GAA≥300 carriers to cases with non-expanded GAA ataxia resulting in defining a key phenotype triad: onset after 45 years, downbeat nystagmus, episodic ataxic features including diplopia; and a frequent absence of dysarthria. All maternally transmitted alleles above 100 GAA were unstable with a median expansion of +18 repeats per generation (r2 = 0.44; p < 0.0001). In comparison, paternally transmitted alleles above 100 GAA mostly decreased in size (-15 GAA (r2 = 0.63; p < 0.0001)), resulting in the transmission bias observed in SCA27B pedigrees. INTERPRETATION: SCA27B diagnosis must consider both the phenotype and GAA expansion size. In carriers of GAA250-299 repeats, the absence of documented familial transmission and a presentation deviating from the key SCA27B phenotype, should prompt the search for an alternative cause. Affected fathers have a reduced risk of having affected children, which has potential implications for genetic counseling. FUNDING: This work was supported by the Fondation pour la Recherche Médicale, grant number 13338 to JLM, the Association Connaître les Syndrome Cérébelleux - France (to GS) and by the European Union's Horizon 2020 research and innovation program under grant agreement No 779257 ("SOLVE-RD" to GS). DP holds a Fellowship award from the Canadian Institutes of Health Research (CIHR). SK received a grant (01GM1905C) from the Federal Ministry of Education and Research, Germany, through the TreatHSP network. This work was supported by the Australian Government National Health and Medical Research Council grants (GNT2001513 and MRFF2007677) to MB and PJL.


Subject(s)
Cerebellar Ataxia , Friedreich Ataxia , Child , Humans , Ataxia/diagnosis , Ataxia/genetics , Australia , Canada , Cerebellar Ataxia/diagnosis , Cerebellar Ataxia/genetics , Cross-Sectional Studies , Friedreich Ataxia/genetics
6.
Eur J Obstet Gynecol Reprod Biol ; 291: 88-95, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37857147

ABSTRACT

OBJECTIVES: In contrast to miRNA expression, little attention has been given to piwiRNA (piRNA) expression among endometriosis patients. The aim of the present study was to explore the human piRNAome and to investigate a potential piRNA saliva-based diagnostic signature for endometriosis. METHODS: Data from the prospective "ENDOmiRNA" study (ClinicalTrials.gov Identifier: NCT04728152) were used. Saliva samples from 200 patients were analyzed in order to evaluate human piRNA expression using the piRNA bank. Next Generation Sequencing (NGS), barcoding of unique molecular identifiers and both Artificial Intelligence (AI) and machine learning (ML) were used. For each piRNA, sensitivity, specificity, and ROC AUC values were calculated for the diagnosis of endometriosis. RESULTS: 201 piRNAs were identified, none had an AUC ≥ 0.70, and only three piRNAs (piR-004153, piR001918, piR-020401) had an AUC between ≥ 0.6 and < 0.70. Seven were differentially expressed: piR-004153, piR-001918, piR-020401, piR-012864, piR-017716, piR-020326 and piR-016904. The respective correlation and accuracy to diagnose endometriosis according to the F1-score, sensitivity, specificity, and AUC ranged from 0 to 0.862 %, 0-0.961 %, 0.085-1, and 0.425-0.618. A correlation was observed between the patients' age (≥35 years) and piR-004153 (p = 0.002) and piR-017716 (p = 0.030). Among the 201 piRNAs, four were differentially expressed in patients with and without hormonal treatment: piR-004153 (p = 0.015), piR-020401 (p = 0.001), piR-012864 (p = 0.036) and piR-017716 (p = 0.009). CONCLUSION: Our results support the link between piRNAs and endometriosis physiopathology and establish its utility as a potential diagnostic biomarker using saliva samples. Per se, piRNA expression should be analyzed along with the clinical status of a patient.


Subject(s)
Endometriosis , Piwi-Interacting RNA , Female , Humans , Adult , RNA, Small Interfering/genetics , Endometriosis/diagnosis , Endometriosis/genetics , Artificial Intelligence , Prospective Studies , Biomarkers
7.
Reprod Biomed Online ; 46(1): 138-149, 2023 01.
Article in English | MEDLINE | ID: mdl-36411203

ABSTRACT

RESEARCH QUESTION: Can a saliva-based miRNA signature for endometriosis-associated infertility be designed and validated by analysing the human miRNome? DESIGN: The prospective ENDOmiARN study (NCT04728152) included 200 saliva samples obtained between January 2021 and June 2021 from women with pelvic pain suggestive of endometriosis. All patients underwent either laparoscopy, magnetic resonance imaging, or both. Patients diagnosed with endometriosis were allocated to one of two groups according to their fertility status. Data analysis consisted of identifying a set of miRNA biomarkers using next-generation sequencing, and development of a saliva-based miRNA signature of infertility among patients with endometriosis based on a random forest model. RESULTS: Among the 153 patients diagnosed with endometriosis, 24% (n = 36) were infertile and 76% (n = 117) were fertile. Small RNA-sequencing of the 153 saliva samples yielded approximately 3712 M raw sequencing reads (from ∼13.7 M to ∼39.3 M reads/sample). Of the 2561 known miRNAs, the feature selection method generated a signature of 34 miRNAs linked to endometriosis-associated infertility. After validation, the most accurate signature model had a sensitivity, specificity and area under the curve of 100%. CONCLUSION: A saliva-based miRNA signature for endometriosis-associated infertility is reported. Although the results still require external validation before using the signature in routine practice, this non-invasive tool is likely to have a major effect on care provided to women with endometriosis.


Subject(s)
Endometriosis , Infertility, Female , Infertility , MicroRNAs , Female , Humans , Endometriosis/complications , Endometriosis/diagnosis , Endometriosis/genetics , Infertility, Female/genetics , Infertility, Female/pathology , MicroRNAs/genetics , Prospective Studies , Saliva
8.
NEJM Evid ; 2(7): EVIDoa2200282, 2023 Jul.
Article in English | MEDLINE | ID: mdl-38320163

ABSTRACT

Salivary miRNA Signature of EndometriosisThis interim analysis of the prospective, multicenter, external validation ENDOmiRNA Saliva Test study, confirms the diagnostic performance and reproducibility of the saliva miRNA signature for endometriosis. At a population prevalence of ∼80%, the miRNA signature had a sensitivity of 96.2%, specificity of 95.1%, and area under the curve of 0.96.


Subject(s)
Endometriosis , MicroRNAs , Female , Humans , MicroRNAs/genetics , Endometriosis/diagnosis , Prospective Studies , Reproducibility of Results , Biomarkers, Tumor/genetics
9.
Int J Mol Sci ; 23(14)2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35887388

ABSTRACT

Endometriosis, defined by the presence of endometrium-like tissue outside the uterus, affects 2-10% of the female population, i.e., around 190 million women, worldwide. The aim of the prospective ENDO-miRNA study was to develop a bioinformatics approach for microRNA-sequencing analysis of 200 saliva samples for miRNAome expression and to test its diagnostic accuracy for endometriosis. Among the 200 patients, 76.5% (n = 153) had confirmed endometriosis and 23.5% (n = 47) had no endometriosis (controls). Small RNA-seq of 200 saliva samples yielded ~4642 M raw sequencing reads (from ~13.7 M to ~39.3 M reads/sample). The number of expressed miRNAs ranged from 1250 (outlier) to 2561 per sample. Some 2561 miRNAs were found to be differentially expressed in the saliva samples of patients with endometriosis compared with the control patients. Among these, 1.17% (n = 30) were up- or downregulated. Among these, the F1-score, sensitivity, specificity, and AUC ranged from 11-86.8%, 5.8-97.4%, 10.6-100%, and 39.3-69.2%, respectively. Here, we report a bioinformatic approach to saliva miRNA sequencing and analysis. We underline the advantages of using saliva over blood in terms of ease of collection, reproducibility, stability, safety, non-invasiveness. This report describes the whole saliva transcriptome to make miRNA quantification a validated, standardized, and reliable technique for routine use. The methodology could be applied to build a saliva signature of endometriosis.


Subject(s)
Endometriosis , MicroRNAs , Computational Biology , Endometriosis/diagnosis , Endometriosis/genetics , Endometriosis/metabolism , Endometrium/metabolism , Female , Humans , MicroRNAs/metabolism , Prospective Studies , Reproducibility of Results , Saliva/metabolism
10.
Diagnostics (Basel) ; 12(5)2022 May 05.
Article in English | MEDLINE | ID: mdl-35626305

ABSTRACT

The aim of our study was to describe the bioinformatics approach to analyze miRNome with Next Generation Sequencing (NGS) of 200 plasma samples from patients with and without endometriosis. Patients were prospectively included in the ENDO-miRNA study that selected patients with pelvic pain suggestive of endometriosis. miRNA sequencing was performed using an Novaseq6000 sequencer (Illumina, San Diego, CA, USA). Small RNA-seq of 200 plasma samples yielded ~4228 M raw sequencing reads. A total of 2633 miRNAs were found differentially expressed. Among them, 8.6% (n = 229) were up- or downregulated. For these 229 miRNAs, the F1-score, sensitivity, specificity, and AUC ranged from 0-88.2%, 0-99.4%, 4.3-100%, and 41.5-68%, respectively. Utilizing the combined bioinformatic and NGS approach, a specific and broad panel of miRNAs was detected as being potentially suitable for building a blood signature of endometriosis.

11.
Sci Rep ; 12(1): 4051, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35260677

ABSTRACT

Endometriosis, characterized by endometrial-like tissue outside the uterus, is thought to affect 2-10% of women of reproductive age: representing about 190 million women worldwide. Numerous studies have evaluated the diagnostic value of blood biomarkers but with disappointing results. Thus, the gold standard for diagnosing endometriosis remains laparoscopy. We performed a prospective trial, the ENDO-miRNA study, using both Artificial Intelligence (AI) and Machine Learning (ML), to analyze the current human miRNome to differentiate between patients with and without endometriosis, and to develop a blood-based microRNA (miRNA) diagnostic signature for endometriosis. Here, we present the first blood-based diagnostic signature obtained from a combination of two robust and disruptive technologies merging the intrinsic quality of miRNAs to condense the endometriosis phenotype (and its heterogeneity) with the modeling power of AI. The most accurate signature provides a sensitivity, specificity, and Area Under the Curve (AUC) of 96.8%, 100%, and 98.4%, respectively, and is sufficiently robust and reproducible to replace the gold standard of diagnostic surgery. Such a diagnostic approach for this debilitating disorder could impact recommendations from national and international learned societies.


Subject(s)
Endometriosis , MicroRNAs , Artificial Intelligence , Biomarkers , Endometriosis/genetics , Endometrium , Female , Humans , Prospective Studies
12.
J Clin Med ; 11(3)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35160066

ABSTRACT

BACKGROUND: Endometriosis diagnosis constitutes a considerable economic burden for the healthcare system with diagnostic tools often inconclusive with insufficient accuracy. We sought to analyze the human miRNAome to define a saliva-based diagnostic miRNA signature for endometriosis. METHODS: We performed a prospective ENDO-miRNA study involving 200 saliva samples obtained from 200 women with chronic pelvic pain suggestive of endometriosis collected between January and June 2021. The study consisted of two parts: (i) identification of a biomarker based on genome-wide miRNA expression profiling by small RNA sequencing using next-generation sequencing (NGS) and (ii) development of a saliva-based miRNA diagnostic signature according to expression and accuracy profiling using a Random Forest algorithm. RESULTS: Among the 200 patients, 76.5% (n = 153) were diagnosed with endometriosis and 23.5% (n = 47) without (controls). Small RNA-seq of 200 saliva samples yielded ~4642 M raw sequencing reads (from ~13.7 M to ~39.3 M reads/sample). Quantification of the filtered reads and identification of known miRNAs yielded ~190 M sequences that were mapped to 2561 known miRNAs. Of the 2561 known miRNAs, the feature selection with Random Forest algorithm generated after internally cross validation a saliva signature of endometriosis composed of 109 miRNAs. The respective sensitivity, specificity, and AUC for the diagnostic miRNA signature were 96.7%, 100%, and 98.3%. CONCLUSIONS: The ENDO-miRNA study is the first prospective study to report a saliva-based diagnostic miRNA signature for endometriosis. This could contribute to improving early diagnosis by means of a non-invasive tool easily available in any healthcare system.

13.
Diagnostics (Basel) ; 12(1)2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35054341

ABSTRACT

The pathophysiology of endometriosis remains poorly understood. The aim of the present study was to investigate functions and pathways associated with the various miRNAs differentially expressed in patients with endometriosis. Plasma samples of the 200 patients from the prospective "ENDO-miRNA" study were analyzed and all known human miRNAs were sequenced. For each miRNA, sensitivity, specificity, and ROC AUC values were calculated for the diagnosis of endometriosis. miRNAs with an AUC ≥ 0.6 were selected for further analysis. A comprehensive review of recent articles from the PubMed, Clinical Trials.gov, Cochrane Library, and Web of Science databases was performed to identify functions and pathways associated with the selected miRNAs. In total, 2633 miRNAs were found in the patients with endometriosis. Among the 57 miRNAs with an AUC ≥ 0.6: 20 had never been reported before; one (miR-124-3p) had previously been observed in endometriosis; and the remaining 36 had been reported in benign and malignant disorders. miR-124-3p is involved in ectopic endometrial cell proliferation and invasion and plays a role in the following pathways: mTOR, STAT3, PI3K/Akt, NF-κB, ERK, PLGF-ROS, FGF2-FGFR, MAPK, GSK3B/ß-catenin. Most of the remaining 36 miRNAs are involved in carcinogenesis through cell proliferation, apoptosis, and invasion. The three main pathways involved are Wnt/ß-catenin, PI3K/Akt, and NF-KB. Our results provide evidence of the relation between the miRNA profiles of patients with endometriosis and various signaling pathways implicated in its pathophysiology.

14.
Brain ; 144(9): 2798-2811, 2021 10 22.
Article in English | MEDLINE | ID: mdl-34687211

ABSTRACT

The G4C2-repeat expansion in C9orf72 is the most common cause of frontotemporal dementia and of amyotrophic lateral sclerosis. The variability of age at onset and phenotypic presentations is a hallmark of C9orf72 disease. In this study, we aimed to identify modifying factors of disease onset in C9orf72 carriers using a family-based approach, in pairs of C9orf72 carrier relatives with concordant or discordant age at onset. Linkage and association analyses provided converging evidence for a locus on chromosome Xq27.3. The minor allele A of rs1009776 was associated with an earlier onset (P = 1 × 10-5). The association with onset of dementia was replicated in an independent cohort of unrelated C9orf72 patients (P = 0.009). The protective major allele delayed the onset of dementia from 5 to 13 years on average depending on the cohort considered. The same trend was observed in an independent cohort of C9orf72 patients with extreme deviation of the age at onset (P = 0.055). No association of rs1009776 was detected in GRN patients, suggesting that the effect of rs1009776 was restricted to the onset of dementia due to C9orf72. The minor allele A is associated with a higher SLITRK2 expression based on both expression quantitative trait loci (eQTL) databases and in-house expression studies performed on C9orf72 brain tissues. SLITRK2 encodes for a post-synaptic adhesion protein. We further show that synaptic vesicle glycoprotein 2 and synaptophysin, two synaptic vesicle proteins, were decreased in frontal cortex of C9orf72 patients carrying the minor allele. Upregulation of SLITRK2 might be associated with synaptic dysfunctions and drives adverse effects in C9orf72 patients that could be modulated in those carrying the protective allele. How the modulation of SLITRK2 expression affects synaptic functions and influences the disease onset of dementia in C9orf72 carriers will require further investigations. In summary, this study describes an original approach to detect modifier genes in rare diseases and reinforces rising links between C9orf72 and synaptic dysfunctions that might directly influence the occurrence of first symptoms.


Subject(s)
C9orf72 Protein/genetics , Frontotemporal Lobar Degeneration/diagnosis , Frontotemporal Lobar Degeneration/genetics , Genes, X-Linked/genetics , Genome-Wide Association Study/methods , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Adult , Age of Onset , Aged , Aged, 80 and over , Cohort Studies , Female , Frontotemporal Lobar Degeneration/epidemiology , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics
15.
J Neurol Neurosurg Psychiatry ; 92(12): 1278-1288, 2021 12.
Article in English | MEDLINE | ID: mdl-34349004

ABSTRACT

OBJECTIVE: Neurofilament light chain (NfL) is a promising biomarker in genetic frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). We evaluated plasma neurofilament light chain (pNfL) levels in controls, and their longitudinal trajectories in C9orf72 and GRN cohorts from presymptomatic to clinical stages. METHODS: We analysed pNfL using Single Molecule Array (SiMoA) in 668 samples (352 baseline and 316 follow-up) of C9orf72 and GRN patients, presymptomatic carriers (PS) and controls aged between 21 and 83. They were longitudinally evaluated over a period of >2 years, during which four PS became prodromal/symptomatic. Associations between pNfL and clinical-genetic variables, and longitudinal NfL changes, were investigated using generalised and linear mixed-effects models. Optimal cut-offs were determined using the Youden Index. RESULTS: pNfL levels increased with age in controls, from ~5 to~18 pg/mL (p<0.0001), progressing over time (mean annualised rate of change (ARC): +3.9%/year, p<0.0001). Patients displayed higher levels and greater longitudinal progression (ARC: +26.7%, p<0.0001), with gene-specific trajectories. GRN patients had higher levels than C9orf72 (86.21 vs 39.49 pg/mL, p=0.014), and greater progression rates (ARC:+29.3% vs +24.7%; p=0.016). In C9orf72 patients, levels were associated with the phenotype (ALS: 71.76 pg/mL, FTD: 37.16, psychiatric: 15.3; p=0.003) and remarkably lower in slowly progressive patients (24.11, ARC: +2.5%; p=0.05). Mean ARC was +3.2% in PS and +7.3% in prodromal carriers. We proposed gene-specific cut-offs differentiating patients from controls by decades. CONCLUSIONS: This study highlights the importance of gene-specific and age-specific references for clinical and therapeutic trials in genetic FTD/ALS. It supports the usefulness of repeating pNfL measurements and considering ARC as a prognostic marker of disease progression. TRIAL REGISTRATION NUMBERS: NCT02590276 and NCT04014673.


Subject(s)
Amyotrophic Lateral Sclerosis/diagnosis , C9orf72 Protein/genetics , Frontotemporal Dementia/diagnosis , Neurofilament Proteins/blood , Progranulins/genetics , Adult , Aged , Aged, 80 and over , Amyotrophic Lateral Sclerosis/blood , Amyotrophic Lateral Sclerosis/genetics , Disease Progression , Female , Frontotemporal Dementia/blood , Frontotemporal Dementia/genetics , Humans , Male , Middle Aged
16.
J Neurol Neurosurg Psychiatry ; 92(5): 485-493, 2021 05.
Article in English | MEDLINE | ID: mdl-33239440

ABSTRACT

OBJECTIVE: To identify potential biomarkers of preclinical and clinical progression in chromosome 9 open reading frame 72 gene (C9orf72)-associated disease by assessing the expression levels of plasma microRNAs (miRNAs) in C9orf72 patients and presymptomatic carriers. METHODS: The PREV-DEMALS study is a prospective study including 22 C9orf72 patients, 45 presymptomatic C9orf72 mutation carriers and 43 controls. We assessed the expression levels of 2576 miRNAs, among which 589 were above noise level, in plasma samples of all participants using RNA sequencing. The expression levels of the differentially expressed miRNAs between patients, presymptomatic carriers and controls were further used to build logistic regression classifiers. RESULTS: Four miRNAs were differentially expressed between patients and controls: miR-34a-5p and miR-345-5p were overexpressed, while miR-200c-3p and miR-10a-3p were underexpressed in patients. MiR-34a-5p was also overexpressed in presymptomatic carriers compared with healthy controls, suggesting that miR-34a-5p expression is deregulated in cases with C9orf72 mutation. Moreover, miR-345-5p was also overexpressed in patients compared with presymptomatic carriers, which supports the correlation of miR-345-5p expression with the progression of C9orf72-associated disease. Together, miR-200c-3p and miR-10a-3p underexpression might be associated with full-blown disease. Four presymptomatic subjects in transitional/prodromal stage, close to the disease conversion, exhibited a stronger similarity with the expression levels of patients. CONCLUSIONS: We identified a signature of four miRNAs differentially expressed in plasma between clinical conditions that have potential to represent progression biomarkers for C9orf72-associated frontotemporal dementia and amyotrophic lateral sclerosis. This study suggests that dysregulation of miRNAs is dynamically altered throughout neurodegenerative diseases progression, and can be detectable even long before clinical onset. TRIAL REGISTRATION NUMBER: NCT02590276.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , C9orf72 Protein/genetics , Frontotemporal Dementia/metabolism , MicroRNAs/blood , Adult , Aged , Amyotrophic Lateral Sclerosis/blood , Amyotrophic Lateral Sclerosis/genetics , Biomarkers/blood , Disease Progression , Female , Frontotemporal Dementia/blood , Frontotemporal Dementia/genetics , Humans , Male , Middle Aged , Mutation , Exome Sequencing
17.
Neurobiol Aging ; 91: 167.e1-167.e9, 2020 07.
Article in English | MEDLINE | ID: mdl-32171590

ABSTRACT

GRN mutations are frequent causes of familial frontotemporal degeneration. Although there is no clear consensual threshold, plasma progranulin levels represent an efficient biomarker for predicting GRN mutations when decreased. We evaluated plasma levels to determine whether it could also predict age at onset, clinical phenotype, or disease progression in 160 GRN carriers. Importantly, progranulin levels were influenced by gender, with lower levels in male than in female patients in our study. Although we found no correlation with age at onset or with clinical phenotype, we confirmed that decreased level predicts GRN mutations, even in presymptomatic carriers more than four decades before disease onset. We also provided first evidence for the stability of levels throughout longitudinal trajectory in carriers, over a 4-year time span. Finally, we confirmed that progranulin levels constitute a reliable, cost-effective marker, suitable as a screening tool in patients with familial frontotemporal degeneration, and more broadly in patients without family history or with atypical presentations who are less likely to be referred for molecular diagnosis.


Subject(s)
Frontotemporal Dementia/diagnosis , Frontotemporal Lobar Degeneration/diagnosis , Progranulins/blood , Adult , Age of Onset , Aged , Biomarkers/blood , Female , France , Frontotemporal Dementia/genetics , Frontotemporal Lobar Degeneration/genetics , Heterozygote , Humans , Male , Middle Aged , Mutation , Predictive Value of Tests , Progranulins/genetics , Sex Characteristics , Time Factors
18.
Neurobiol Aging ; 85: 154.e9-154.e11, 2020 01.
Article in English | MEDLINE | ID: mdl-31262553

ABSTRACT

GRN null mutations are among the main genetic causes of frontotemporal dementia through progranulin haploinsufficiency. Most missense mutations are considered not pathogenic. The p.Trp7Arg substitution is localized within the signal peptide domain and no formal evidence for its pathogenicity has yet been provided. We identified the p.Trp7Arg substitution in 3 carriers with low plasma progranulin levels. This evidences that this missense mutation leads to functional haploinsufficiency and should thus be considered pathogenic. Assessing the pathogenicity of variants of unknown significance has significant implications for clinical practice, genetic counseling, and future therapeutic interventions.


Subject(s)
Frontotemporal Dementia/etiology , Haploinsufficiency/genetics , Mutation, Missense , Progranulins/genetics , C9orf72 Protein/genetics , DNA-Binding Proteins/genetics , Female , Humans , Male , Middle Aged
19.
Brain ; 143(1): 303-319, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31855245

ABSTRACT

Homozygous mutations in the progranulin gene (GRN) are associated with neuronal ceroid lipofuscinosis 11 (CLN11), a rare lysosomal-storage disorder characterized by cerebellar ataxia, seizures, retinitis pigmentosa, and cognitive disorders, usually beginning between 13 and 25 years of age. This is a rare condition, previously reported in only four families. In contrast, heterozygous GRN mutations are a major cause of frontotemporal dementia associated with neuronal cytoplasmic TDP-43 inclusions. We identified homozygous GRN mutations in six new patients. The phenotypic spectrum is much broader than previously reported, with two remarkably distinct presentations, depending on the age of onset. A childhood/juvenile form is characterized by classical CLN11 symptoms at an early age at onset. Unexpectedly, other homozygous patients presented a distinct delayed phenotype of frontotemporal dementia and parkinsonism after 50 years; none had epilepsy or cerebellar ataxia. Another major finding of this study is that all GRN mutations may not have the same impact on progranulin protein synthesis. A hypomorphic effect of some mutations is supported by the presence of residual levels of plasma progranulin and low levels of normal transcript detected in one case with a homozygous splice-site mutation and late onset frontotemporal dementia. This is a new critical finding that must be considered in therapeutic trials based on replacement strategies. The first neuropathological study in a homozygous carrier provides new insights into the pathological mechanisms of the disease. Hallmarks of neuronal ceroid lipofuscinosis were present. The absence of TDP-43 cytoplasmic inclusions markedly differs from observations of heterozygous mutations, suggesting a pathological shift between lysosomal and TDP-43 pathologies depending on the mono or bi-allelic status. An intriguing observation was the loss of normal TDP-43 staining in the nucleus of some neurons, which could be the first stage of the TDP-43 pathological process preceding the formation of typical cytoplasmic inclusions. Finally, this study has important implications for genetic counselling and molecular diagnosis. Semi-dominant inheritance of GRN mutations implies that specific genetic counselling should be delivered to children and parents of CLN11 patients, as they are heterozygous carriers with a high risk of developing dementia. More broadly, this study illustrates the fact that genetic variants can lead to different phenotypes according to their mono- or bi-allelic state, which is a challenge for genetic diagnosis.


Subject(s)
Frontotemporal Dementia/genetics , Neuronal Ceroid-Lipofuscinoses/genetics , Parkinsonian Disorders/genetics , Progranulins/genetics , Adolescent , Adult , Age of Onset , Cerebellar Ataxia/genetics , Child , Cognitive Dysfunction/genetics , Epilepsy/genetics , Female , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/physiopathology , Heterozygote , Homozygote , Humans , Male , Middle Aged , Mutation , Neuronal Ceroid-Lipofuscinoses/diagnostic imaging , Neuronal Ceroid-Lipofuscinoses/physiopathology , Parkinsonian Disorders/diagnostic imaging , Parkinsonian Disorders/physiopathology , Progranulins/metabolism , RNA Splicing/genetics , Rare Diseases , Retinitis Pigmentosa/genetics , TDP-43 Proteinopathies/diagnostic imaging , TDP-43 Proteinopathies/genetics , TDP-43 Proteinopathies/physiopathology , Young Adult
20.
Nat Commun ; 10(1): 4919, 2019 10 29.
Article in English | MEDLINE | ID: mdl-31664039

ABSTRACT

Familial Adult Myoclonic Epilepsy (FAME) is a genetically heterogeneous disorder characterized by cortical tremor and seizures. Intronic TTTTA/TTTCA repeat expansions in SAMD12 (FAME1) are the main cause of FAME in Asia. Using genome sequencing and repeat-primed PCR, we identify another site of this repeat expansion, in MARCH6 (FAME3) in four European families. Analysis of single DNA molecules with nanopore sequencing and molecular combing show that expansions range from 3.3 to 14 kb on average. However, we observe considerable variability in expansion length and structure, supporting the existence of multiple expansion configurations in blood cells and fibroblasts of the same individual. Moreover, the largest expansions are associated with micro-rearrangements occurring near the expansion in 20% of cells. This study provides further evidence that FAME is caused by intronic TTTTA/TTTCA expansions in distinct genes and reveals that expansions exhibit an unexpectedly high somatic instability that can ultimately result in genomic rearrangements.


Subject(s)
DNA Repeat Expansion , Epilepsies, Myoclonic/genetics , Membrane Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Adolescent , Adult , Aged , Chromosome Mapping , Female , Humans , Introns , Male , Middle Aged , Pedigree , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...