Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Pharmaceutics ; 16(3)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38543329

ABSTRACT

Head and neck cancer is a common cancer worldwide. Radiotherapy has an essential role in the treatment of head and neck cancers. After irradiation, early effects of reduced saliva flow and hampered water secretion are seen, along with cell loss and a decline in amylase production. Currently, there is no curative treatment for radiation-induced hyposalivation/xerostomia. This study aimed to develop and optimize a validated manufacturing process for salivary gland organoid cells containing stem/progenitor cells using salivary gland patient biopsies as a starting material. The manufacturing process should comply with GMP requirements to ensure clinical applicability. A laboratory-scale process was further developed into a good manufacturing practice (GMP) process. Clinical-grade batches complying with set acceptance and stability criteria were manufactured. The results showed that the manufactured salivary gland-derived cells were able to self-renew, differentiate, and show functionality. This study describes the optimization of an innovative and promising novel cell-based therapy.

2.
Pharmaceuticals (Basel) ; 14(9)2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34577622

ABSTRACT

Monoclonal antibodies are an important addition to the medicinal treatment paradigm for IBD patients. While effective, these agents show a high degree of primary and secondary non-response, and methods to predict response are highly desired. Information on drug distribution at the target level is often lacking. Fluorescent endoscopic imaging using labelled antibody drugs may provide insight regarding drug distribution, target engagement and drug response, but these assessments require stable and functional fluorescently-conjugated probes. Infliximab, vedolizumab, adalimumab and ustekinumab were conjugated to IRDye 800CW, IRDye 680LT and ZW800-1. The resulting 12 tracer candidates were analysed and characterised on SE-HPLC, SDS-PAGE, iso-electric focussing (IEF) and ELISA in order to evaluate their feasibility as candidate clinical tracers for cGMP development. Major differences in the conjugation results could be seen for each conjugated drug. For Infliximab, 2 conjugates (800CW and 680LT) showed formation of aggregates, while conjugates of all drugs with ZW800-1 showed reduced fluorescent brightness, reduced purification yield and formation of fragments. All 6 of these candidates were considered unfeasible. From the remaining 6, ustekinumab-680LT showed reduced binding to IL23, and was therefore considered unfeasible. Out of 12 potential tracer candidates, 5 were considered feasible for further development: vedolizumab-800CW, vedolizumab-680LT, adalimumab-800CW, adalimumab-680LT and ustekinumab-800CW. Infliximab-680LT and ustekinumab-680LT failed to meet the standards for this panel, but may be rendered feasible if tracer production methods were further optimized.

3.
Sci Rep ; 11(1): 2899, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33536498

ABSTRACT

Vascular endothelial growth factor-A (VEGF-A) is assumed to play a crucial role in the development and rupture of vulnerable plaques in the atherosclerotic process. We used a VEGF-A targeted fluorescent antibody (bevacizumab-IRDye800CW [bevacizumab-800CW]) to image and visualize the distribution of VEGF-A in (non-)culprit carotid plaques ex vivo. Freshly endarterectomized human plaques (n = 15) were incubated in bevacizumab-800CW ex vivo. Subsequent NIRF imaging showed a more intense fluorescent signal in the culprit plaques (n = 11) than in the non-culprit plaques (n = 3). A plaque received from an asymptomatic patient showed pathologic features similar to the culprit plaques. Cross-correlation with VEGF-A immunohistochemistry showed co-localization of VEGF-A over-expression in 91% of the fluorescent culprit plaques, while no VEGF-A expression was found in the non-culprit plaques (p < 0.0001). VEGF-A expression was co-localized with CD34, a marker for angiogenesis (p < 0.001). Ex vivo near-infrared fluorescence (NIRF) imaging by incubation with bevacizumab-800CW shows promise for visualizing VEGF-A overexpression in culprit atherosclerotic plaques in vivo.


Subject(s)
Bevacizumab/pharmacology , Carotid Stenosis/diagnosis , Optical Imaging/methods , Plaque, Atherosclerotic/complications , Vascular Endothelial Growth Factor A/analysis , Aged , Asymptomatic Diseases , Benzenesulfonates/chemistry , Bevacizumab/chemistry , Carotid Stenosis/etiology , Carotid Stenosis/pathology , Carotid Stenosis/surgery , Endarterectomy, Carotid , Feasibility Studies , Female , Fluorescent Dyes/chemistry , Humans , Indoles/chemistry , Male , Middle Aged , Molecular Imaging/methods , Plaque, Atherosclerotic/pathology , Plaque, Atherosclerotic/surgery , Severity of Illness Index , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/metabolism
4.
Mol Ther ; 29(2): 611-625, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33160073

ABSTRACT

A first-in-human phase I trial of Vvax001, an alphavirus-based therapeutic cancer vaccine against human papillomavirus (HPV)-induced cancers was performed assessing immunological activity, safety, and tolerability. Vvax001 consists of replication-incompetent Semliki Forest virus replicon particles encoding HPV16-derived antigens E6 and E7. Twelve participants with a history of cervical intraepithelial neoplasia were included. Four cohorts of three participants were treated per dose level, ranging from 5 × 105 to 2.5 × 108 infectious particles per immunization. The participants received three immunizations with a 3-week interval. For immune monitoring, blood was drawn before immunization and 1 week after the second and third immunization. Immunization with Vvax001 was safe and well tolerated, with only mild injection site reactions, and resulted in both CD4+ and CD8+ T cell responses against E6 and E7 antigens. Even the lowest dose of 5 × 105 infectious particles elicited E6/E7-specific interferon (IFN)-γ responses in all three participants in this cohort. Overall, immunization resulted in positive vaccine-induced immune responses in 12 of 12 participants in one or more assays performed. In conclusion, Vvax001 was safe and induced immune responses in all participants. These data strongly support further clinical evaluation of Vvax001 as a therapeutic vaccine in patients with HPV-related malignancies.


Subject(s)
Cancer Vaccines/immunology , Genetic Vectors/genetics , Neoplasms/etiology , Neoplasms/therapy , Papillomavirus Infections/complications , Papillomavirus Vaccines/immunology , Semliki forest virus/genetics , Alphapapillomavirus/immunology , Cancer Vaccines/administration & dosage , Cancer Vaccines/genetics , Genetic Vectors/administration & dosage , Humans , Immunization , Neoplasms/prevention & control , Oncogene Proteins, Viral/immunology , Papillomavirus E7 Proteins/immunology , Papillomavirus Infections/virology , Papillomavirus Vaccines/administration & dosage , Papillomavirus Vaccines/genetics , Repressor Proteins/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Treatment Outcome , Vaccination
5.
J Immunother Cancer ; 8(2)2020 10.
Article in English | MEDLINE | ID: mdl-33020241

ABSTRACT

BACKGROUND: To better predict response to immune checkpoint therapy and toxicity in healthy tissues, insight in the in vivo behavior of immune checkpoint targeting monoclonal antibodies is essential. Therefore, we aimed to study in vivo pharmacokinetics and whole-body distribution of zirconium-89 (89Zr) labeled programmed cell death protein-1 (PD-1) targeting pembrolizumab with positron-emission tomography (PET) in humanized mice. METHODS: Humanized (huNOG) and non-humanized NOG mice were xenografted with human A375M melanoma cells. PET imaging was performed on day 7 post 89Zr-pembrolizumab (10 µg, 2.5 MBq) administration, followed by ex vivo biodistribution studies. Other huNOG mice bearing A375M tumors received a co-injection of excess (90 µg) unlabeled pembrolizumab or 89Zr-IgG4 control (10 µg, 2.5 MBq). Tumor and spleen tissue were studied with autoradiography and immunohistochemically including PD-1. RESULTS: PET imaging and biodistribution studies showed high 89Zr-pembrolizumab uptake in tissues containing human immune cells, including spleen, lymph nodes and bone marrow. Tumor uptake of 89Zr-pembrolizumab was lower than uptake in lymphoid tissues, but higher than uptake in other organs. High uptake in lymphoid tissues could be reduced by excess unlabeled pembrolizumab. Tracer activity in blood pool was increased by addition of unlabeled pembrolizumab, but tumor uptake was not affected. Autoradiography supported PET findings and immunohistochemical staining on spleen and lymph node tissue showed PD-1 positive cells, whereas tumor tissue was PD-1 negative. CONCLUSION: 89Zr-pembrolizumab whole-body biodistribution showed high PD-1-mediated uptake in lymphoid tissues, such as spleen, lymph nodes and bone marrow, and modest tumor uptake. Our data may enable evaluation of 89Zr-pembrolizumab whole-body distribution in patients.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Biomarkers, Tumor/metabolism , Immunotherapy/methods , Programmed Cell Death 1 Receptor/metabolism , Tertiary Lymphoid Structures/drug therapy , Animals , Antibodies, Monoclonal, Humanized/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Cell Line, Tumor , Humans , Mice
6.
J Immunother Cancer ; 8(2)2020 08.
Article in English | MEDLINE | ID: mdl-32753545

ABSTRACT

Treatment of metastatic melanoma with autologous tumor infiltrating lymphocytes (TILs) is currently applied in several centers. Robust and remarkably consistent overall response rates, of around 50% of treated patients, have been observed across hospitals, including a substantial fraction of durable, complete responses. PURPOSE: Execute a phase I/II feasibility study with TIL therapy in metastatic melanoma at the Netherlands Cancer Institute, with the goal to assess feasibility and potential value of a randomized phase III trial. EXPERIMENTAL: Ten patients were treated with TIL therapy. Infusion products and peripheral blood samples were phenotypically characterized and neoantigen reactivity was assessed. Here, we present long-term clinical outcome and translational data on neoantigen reactivity of the T cell products. RESULTS: Five out of 10 patients, who were all anti-PD-1 naïve at time of treatment, showed an objective clinical response, including two patients with a complete response that are both ongoing for more than 7 years. Immune monitoring demonstrated that neoantigen-specific T cells were detectable in TIL infusion products from three out of three patients analyzed. For six out of the nine neoantigen-specific T cell responses detected in these TIL products, T cell response magnitude increased significantly in the peripheral blood compartment after therapy, and neoantigen-specific T cells were detectable for up to 3 years after TIL infusion. CONCLUSION: The clinical results from this study confirm the robustness of TIL therapy in metastatic melanoma and the potential role of neoantigen-specific T cell reactivity. In addition, the data from this study supported the rationale to initiate an ongoing multicenter phase III TIL trial.


Subject(s)
Lymphocytes, Tumor-Infiltrating/metabolism , Melanoma/genetics , T-Lymphocytes/metabolism , Adult , Aged , Female , Follow-Up Studies , Humans , Male , Melanoma/pathology , Middle Aged
7.
Lancet Haematol ; 7(6): e479-e489, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32470439

ABSTRACT

Mature lymphoproliferative diseases are a heterogeneous group of neoplasms arising from different stages of B-cell and T-cell development. With improved understanding of the molecular processes in lymphoma and novel treatment options, arises a growing need for the molecular characterisation of tumours. Molecular imaging with single-photon-emission CT and PET using specific radionuclide tracers can provide whole-body information to investigate cancer biology, to evaluate phenotypic heterogeneity, to identify resistance to targeted therapy, and to assess the biodistribution of drugs in patients. In this Review, we evaluate the existing literature on molecular imaging in lymphoma, other than 18F-fluordeoxyglucose molecular imaging. The aim is to examine the contribution of molecular imaging to the understanding of the biology of lymphoma and to discuss potential implications for the diagnostics and therapy of this disease. Finally, we discuss possible applications for molecular imaging of patients with lymphoma in the clinical context.


Subject(s)
Fluorodeoxyglucose F18/metabolism , Lymphoma/diagnostic imaging , Molecular Imaging/methods , Biomarkers, Tumor/metabolism , Clinical Trials as Topic , Humans , Immunotherapy/methods , Lymphoma/therapy , Lymphoproliferative Disorders/pathology , Neoplasm Staging/methods , Positron-Emission Tomography/methods , Precision Medicine/methods , Radioimmunotherapy/methods , Radioisotopes/metabolism , Tissue Distribution/drug effects
8.
Theranostics ; 10(9): 3994-4005, 2020.
Article in English | MEDLINE | ID: mdl-32226534

ABSTRACT

Tumor-positive resection margins are present in up to 23% of head and neck cancer (HNC) surgeries, as intraoperative techniques for real-time evaluation of the resection margins are lacking. In this study, we investigated the safety and potential clinical value of fluorescence-guided imaging (FGI) for resection margin evaluation in HNC patients. We determined the optimal cetuximab-800CW dose by quantification of intrinsic fluorescence values using multi-diameter single-fiber reflectance, single-fiber fluorescence (MDSFR/SFF) spectroscopy. Methods: Five cohorts of three HNC patients received cetuximab-800CW systemically: three single dose cohorts (10, 25, 50 mg) and two cohorts pre-dosed with 75 mg unlabeled cetuximab (15 or 25 mg). Fluorescence visualization and MDSFR/SFF spectroscopy quantification was performed and were correlated to histopathology. Results: There were no study-related adverse events higher than Common Terminology Criteria for Adverse Events grade-II. Quantification of intrinsic fluorescence values showed a dose-dependent increase in background fluorescence in the single dose cohorts (p<0.001, p<0.001), which remained consistently low in the pre-dosed cohorts (p=0.6808). Resection margin status was evaluated with a sensitivity of 100% (4/4 tumor-positive margins) and specificity of 91% (10/11 tumor-negative margins). Conclusion: A pre-dose of 75 mg unlabeled cetuximab followed by 15 mg cetuximab-800CW was considered the optimal dose based on safety, fluorescence visualization and quantification of intrinsic fluorescence values. We were able to use a lower dose cetuximab-800CW than previously described, while remaining a high sensitivity for tumor detection due to application of equipment optimized for IRDye800CW detection, which was validated by quantification of intrinsic fluorescence values.


Subject(s)
Antineoplastic Agents, Immunological/administration & dosage , Benzenesulfonates/administration & dosage , Cetuximab/administration & dosage , Head and Neck Neoplasms/surgery , Indoles/administration & dosage , Optical Imaging , Surgery, Computer-Assisted , Aged , Aged, 80 and over , Cohort Studies , Female , Fluorescent Dyes/chemistry , Humans , Male , Margins of Excision , Middle Aged
10.
J Nucl Med ; 61(5): 655-661, 2020 05.
Article in English | MEDLINE | ID: mdl-31628218

ABSTRACT

Negative circumferential resection margins (CRM) are the cornerstone for the curative treatment of locally advanced rectal cancer (LARC). However, in up to 18.6% of patients, tumor-positive resection margins are detected on histopathology. In this proof-of-concept study, we investigated the feasibility of optical molecular imaging as a tool for evaluating the CRM directly after surgical resection to improve tumor-negative CRM rates. Methods: LARC patients treated with neoadjuvant chemoradiotherapy received an intravenous bolus injection of 4.5 mg of bevacizumab-800CW, a fluorescent tracer targeting vascular endothelial growth factor A, 2-3 d before surgery (ClinicalTrials.gov identifier: NCT01972373). First, for evaluation of the CRM status, back-table fluorescence-guided imaging (FGI) of the fresh surgical resection specimens (n = 8) was performed. These results were correlated with histopathology results. Second, for determination of the sensitivity and specificity of bevacizumab-800CW for tumor detection, a mean fluorescence intensity cutoff value was determined from the formalin-fixed tissue slices (n = 42; 17 patients). Local bevacizumab-800CW accumulation was evaluated by fluorescence microscopy. Results: Back-table FGI correctly identified a tumor-positive CRM by high fluorescence intensities in 1 of 2 patients (50%) with a tumor-positive CRM. For the other patient, low fluorescence intensities were shown, although (sub)millimeter tumor deposits were present less than 1 mm from the CRM. FGI correctly identified 5 of 6 tumor-negative CRM (83%). The 1 patient with false-positive findings had a marginal negative CRM of only 1.4 mm. Receiver operating characteristic curve analysis of the fluorescence intensities of formalin-fixed tissue slices yielded an optimal mean fluorescence intensity cutoff value for tumor detection of 5,775 (sensitivity of 96.19% and specificity of 80.39%). Bevacizumab-800CW enabled a clear differentiation between tumor and normal tissue up to a microscopic level, with a tumor-to-background ratio of 4.7 ± 2.5 (mean ± SD). Conclusion: In this proof-of-concept study, we showed the potential of back-table FGI for evaluating the CRM status in LARC patients. Optimization of this technique with adaptation of standard operating procedures could change perioperative decision making with regard to extending resections or applying intraoperative radiation therapy in the case of positive CRM.


Subject(s)
Bevacizumab , Margins of Excision , Optical Imaging , Rectal Neoplasms/diagnostic imaging , Rectal Neoplasms/pathology , Surgery, Computer-Assisted , Adult , Aged , Disease-Free Survival , Female , Humans , Male , Middle Aged , Rectal Neoplasms/surgery , Treatment Outcome
11.
Eur J Pharm Sci ; 143: 105096, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31669389

ABSTRACT

Therapeutic vaccination is being explored as a treatment strategy for the treatment of patients with primary or metastatic tumours. We developed a vaccine targeted to Human papillomavirus (HPV)-induced tumours based on recombinant Semliki Forest virus (rSFV) encoding a fusion protein of the E6 and E7 proteins of HPV type 16. To enable a phase I clinical trial with this vaccine, Vvax001, a Good Manufacturing Practice (GMP)-compliant manufacturing process was set up and clinical material was produced. Upstream production of the clinical material resulted in viral titers from 2.4 × 107 to 1.3 × 109 infectious particles/ mL in the harvest. The total volume of 6.0 liter crude virus was purified in 13 consecutive downstream purification runs. The mean titer after purification was 4.0 × 108 infectious particles/ mL and the mean recovery was 19%. Finally, clinical material was filled at a target concentration of 1.25 × 108 infectious particles/mL. Release testing included tests for viral titer and virus identity, biological activity, sterility, bacterial endotoxins, adventitious viruses and absence of replication competent virus. The product complied with all specifications and was released for use as an investigational medicinal product. This is the first GMP production process developed for a SFV-based therapeutic vaccine. The vaccine, Vvax001 is targeted to HPV and has shown promising results in preclinical studies. The GMP-produced Vvax001 material met the quality criteria and was of sufficient quantity to enable assessment of its immunogenicity, safety and efficacy in a clinical setting.


Subject(s)
Cancer Vaccines , Viral Vaccines , Animals , Chlorocebus aethiops , Neoplasms/etiology , Neoplasms/therapy , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/immunology , Papillomaviridae/genetics , Papillomavirus E7 Proteins/genetics , Papillomavirus E7 Proteins/immunology , Papillomavirus Infections/complications , Papillomavirus Infections/therapy , Quality Control , Recombinant Proteins/administration & dosage , Repressor Proteins/genetics , Repressor Proteins/immunology , Vero Cells , Virion
12.
EJNMMI Radiopharm Chem ; 4(1): 15, 2019 Jul 17.
Article in English | MEDLINE | ID: mdl-31659562

ABSTRACT

BACKGROUND: Molecular imaging of immune cells might be a potential tool for response prediction, treatment evaluation and patient selection in inflammatory diseases as well as oncology. Targeting interleukin-2 (IL2) receptors on activated T-cells using positron emission tomography (PET) with N-(4-[18F]fluorobenzoyl)-interleukin-2 ([18F]FB-IL2) could be such a strategy. This paper describes the challenging translation of the partly manual labeling of [18F]FB-IL2 for preclinical studies into an automated procedure following Good Manufacturing Practices (GMP), resulting in a radiopharmaceutical suitable for clinical use. METHODS: The preclinical synthesis of [18F]FB-IL2 was the starting point for translation to a clinical production method. To overcome several challenges, major adaptations in the production process were executed. The final analytical methods and production method were validated and documented. All data with regards to the quality and safety of the final drug product were documented in an investigational medicinal product dossier. RESULTS: Restrictions in the [18F]FB-IL2 production were imposed by hardware configuration of the automated synthesis equipment and by use of disposable cassettes. Critical steps in the [18F]FB-IL2 production comprised the purification method, stability of recombinant human IL2 and the final formulation. With the GMP compliant production method, [18F]FB-IL2 could reliably be produced with consistent quality complying to all specifications. CONCLUSIONS: To enable the use of [18F]FB-IL2 in clinical studies, a fully automated GMP compliant production process was developed. [18F]FB-IL2 is now produced consistently for use in clinical studies.

13.
Clin Cancer Res ; 25(12): 3517-3527, 2019 06 15.
Article in English | MEDLINE | ID: mdl-30745297

ABSTRACT

PURPOSE: Biodistribution of bispecific antibodies in patients is largely unknown. We therefore performed a feasibility study in 9 patients with advanced gastrointestinal adenocarcinomas to explore AMG 211 biodistribution (also known as MEDI-565), an approximately 55 kDa bispecific T-cell engager (BiTE®) directed against carcinoembryonic antigen (CEA) on tumor cells and cluster of differentiation 3 (CD3) on T-cells. EXPERIMENTAL DESIGN: 89Zr-labeled AMG 211 as tracer was administered alone or with cold AMG 211, for PET imaging before and/or during AMG 211 treatment. RESULTS: Before AMG 211 treatment, the optimal imaging dose was 200-µg 89Zr-AMG 211 + 1,800-µg cold AMG 211. At 3 hours, the highest blood pool standardized uptake value (SUV)mean was 4.0, and tracer serum half-life was 3.3 hours. CD3-mediated uptake was clearly observed in CD3-rich lymphoid tissues including spleen and bone marrow (SUVmean 3.2 and 1.8, respectively), and the SUVmean decreased more slowly than in other healthy tissues. 89Zr-AMG 211 remained intact in plasma and was excreted predominantly via the kidneys in degraded forms. Of 43 visible tumor lesions, 37 were PET quantifiable, with a SUVmax of 4.0 [interquartile range (IQR) 2.7-4.4] at 3 hours using the optimal imaging dose. The tracer uptake differed between tumor lesions 5-fold within and 9-fold between patients. During AMG 211 treatment, tracer was present in the blood pool, whereas tumor lesions were not visualized, possibly reflecting target saturation. CONCLUSIONS: This first-in-human study shows high, specific 89Zr-AMG 211 accumulation in CD3-rich lymphoid tissues, as well as a clear, inter- and intraindividual heterogeneous tumor uptake.


Subject(s)
Adenocarcinoma/metabolism , Antibodies, Bispecific/pharmacokinetics , Gastrointestinal Neoplasms/metabolism , Radioisotopes/pharmacokinetics , Radiopharmaceuticals/pharmacokinetics , T-Lymphocytes/immunology , Zirconium/pharmacokinetics , Adenocarcinoma/diagnostic imaging , Adenocarcinoma/drug therapy , Aged , Antibodies, Bispecific/administration & dosage , Antibodies, Bispecific/immunology , Antibodies, Monoclonal/therapeutic use , CD3 Complex/immunology , Carcinoembryonic Antigen/immunology , Carcinoembryonic Antigen/metabolism , Female , GPI-Linked Proteins/metabolism , Gastrointestinal Neoplasms/diagnostic imaging , Gastrointestinal Neoplasms/drug therapy , Humans , Male , Middle Aged , Positron-Emission Tomography/methods , Radioisotopes/administration & dosage , Radiopharmaceuticals/administration & dosage , Radiopharmaceuticals/immunology , T-Lymphocytes/metabolism , Tissue Distribution , Zirconium/administration & dosage
14.
J Nucl Med ; 60(3): 418-423, 2019 03.
Article in English | MEDLINE | ID: mdl-30630938

ABSTRACT

Optical molecular imaging using fluorescently labeled monoclonal antibodies is of significant added value in guiding surgical or endoscopic procedures. However, development of tracers for clinical trials is complex, and implementation in the clinic is therefore slow. We present a roadmap for development and translation of monoclonal antibody tracers into a drug product compliant with current good manufacturing processes (cGMPs). Methods: The production process for cetuximab-800CW and trastuzumab-800CW was optimized with regard to dye-to-protein ratio and formulation buffer. Promising formulations were produced under cGMP conditions and advanced to a full-scale stability study. Tracers were analyzed for stability by size-exclusion high-pressure liquid chromatography, pH measurement, osmolality, visual inspection, and sterility, as required by the European Pharmacopeia and cGMP guidelines. Results: Seven formulations were investigated for cetuximab-800CW and 10 for trastuzumab-800CW. On the basis of the formulation study results, we chose 2 formulations per antibody for investigation during the full-scale stability study. These formulations all performed well, showing good compliance with the acceptance criteria set for each product. Conclusion: We designed a roadmap to standardize the development, formulation, and cGMP translation of molecular fluorescent tracers. Using our standardized approach, we developed 2 stable antibody-based tracers for clinical use. The proposed roadmap can be used to efficiently develop a cGMP-compliant formulation and improve the translation of newly developed optical tracers to first-in-human use.


Subject(s)
Cetuximab/chemistry , Optical Imaging/methods , Translational Research, Biomedical , Trastuzumab/chemistry , Cetuximab/isolation & purification , Drug Discovery , Quality Control , Trastuzumab/isolation & purification
16.
Nat Med ; 24(12): 1852-1858, 2018 12.
Article in English | MEDLINE | ID: mdl-30478423

ABSTRACT

Programmed cell death protein-1/ligand-1 (PD-1/PD-L1) blockade is effective in a subset of patients with several tumor types, but predicting patient benefit using approved diagnostics is inexact, as some patients with PD-L1-negative tumors also show clinical benefit1,2. Moreover, all biopsy-based tests are subject to the errors and limitations of invasive tissue collection3-11. Preclinical studies of positron-emission tomography (PET) imaging with antibodies to PD-L1 suggested that this imaging method might be an approach to selecting patients12,13. Such a technique, however, requires substantial clinical development and validation. Here we present the initial results from a first-in-human study to assess the feasibility of imaging with zirconium-89-labeled atezolizumab (anti-PD-L1), including biodistribution, and secondly test its potential to predict response to PD-L1 blockade (ClinicalTrials.gov identifiers NCT02453984 and NCT02478099). We imaged 22 patients across three tumor types before the start of atezolizumab therapy. The PET signal, a function of tracer exposure and target expression, was high in lymphoid tissues and at sites of inflammation. In tumors, uptake was generally high but heterogeneous, varying within and among lesions, patients, and tumor types. Intriguingly, clinical responses in our patients were better correlated with pretreatment PET signal than with immunohistochemistry- or RNA-sequencing-based predictive biomarkers, encouraging further development of molecular PET imaging for assessment of PD-L1 status and clinical response prediction.


Subject(s)
Antibodies, Monoclonal/administration & dosage , B7-H1 Antigen/administration & dosage , Positron-Emission Tomography , Radioisotopes/administration & dosage , Zirconium/administration & dosage , Adult , Aged , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal, Humanized , B7-H1 Antigen/chemistry , Biopsy , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Female , Humans , Male , Middle Aged , Neoplasm Staging , Radioisotopes/chemistry , Radiopharmaceuticals/administration & dosage , Radiopharmaceuticals/chemistry , Tissue Distribution/drug effects , Triple Negative Breast Neoplasms/diagnostic imaging , Triple Negative Breast Neoplasms/pathology , Urinary Bladder Neoplasms/diagnostic imaging , Urinary Bladder Neoplasms/pathology , Zirconium/chemistry
17.
Nat Commun ; 9(1): 3739, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30228269

ABSTRACT

During the last decade, the emerging field of molecular fluorescence imaging has led to the development of tumor-specific fluorescent tracers and an increase in early-phase clinical trials without having consensus on a standard methodology for evaluating an optical tracer. By combining multiple complementary state-of-the-art clinical optical imaging techniques, we propose a novel analytical framework for the clinical translation and evaluation of tumor-targeted fluorescent tracers for molecular fluorescence imaging which can be used for a range of tumor types and with different optical tracers. Here we report the implementation of this analytical framework and demonstrate the tumor-specific targeting of escalating doses of the near-infrared fluorescent tracer bevacizumab-800CW on a macroscopic and microscopic level. We subsequently demonstrate an 88% increase in the intraoperative detection rate of tumor-involved margins in primary breast cancer patients, indicating the clinical feasibility and support of future studies to evaluate the definitive clinical impact of fluorescence-guided surgery.


Subject(s)
Benchmarking , Breast Neoplasms/diagnostic imaging , Fluorescent Dyes/administration & dosage , Molecular Imaging/methods , Surgery, Computer-Assisted/methods , Aged , Alkanesulfonic Acids/administration & dosage , Alkanesulfonic Acids/chemistry , Animals , Bevacizumab/administration & dosage , Bevacizumab/chemistry , Breast Neoplasms/surgery , Cell Line, Tumor , Feasibility Studies , Female , Fluorescent Dyes/chemistry , Humans , Indoles/administration & dosage , Indoles/chemistry , Margins of Excision , Mastectomy/methods , Middle Aged , Optical Imaging/methods
18.
Theranostics ; 8(6): 1458-1467, 2018.
Article in English | MEDLINE | ID: mdl-29556334

ABSTRACT

Adenoma miss rates in colonoscopy are unacceptably high, especially for sessile serrated adenomas / polyps (SSA/Ps) and in high-risk populations, such as patients with Lynch syndrome. Detection rates may be improved by fluorescence molecular endoscopy (FME), which allows morphological visualization of lesions with high-definition white-light imaging as well as fluorescence-guided identification of lesions with a specific molecular marker. In a clinical proof-of-principal study, we investigated FME for colorectal adenoma detection, using a fluorescently labelled antibody (bevacizumab-800CW) against vascular endothelial growth factor A (VEGFA), which is highly upregulated in colorectal adenomas. Methods: Patients with familial adenomatous polyposis (n = 17), received an intravenous injection with 4.5, 10 or 25 mg of bevacizumab-800CW. Three days later, they received NIR-FME. Results: VEGFA-targeted NIR-FME detected colorectal adenomas at all doses. Best results were achieved in the highest (25 mg) cohort, which even detected small adenomas (<3 mm). Spectroscopy analyses of freshly excised specimen demonstrated the highest adenoma-to-normal ratio of 1.84 for the 25 mg cohort, with a calculated median tracer concentration in adenomas of 6.43 nmol/mL. Ex vivo signal analyses demonstrated NIR fluorescence within the dysplastic areas of the adenomas. Conclusion: These results suggest that NIR-FME is clinically feasible as a real-time, red-flag technique for detection of colorectal adenomas.


Subject(s)
Adenoma/diagnosis , Colorectal Neoplasms/diagnosis , Endoscopy/methods , Fluorescence , Molecular Diagnostic Techniques/methods , Adult , Aged , Bevacizumab/administration & dosage , Female , Fluorescent Dyes/administration & dosage , Humans , Male , Middle Aged , Vascular Endothelial Growth Factor A/analysis , Young Adult
19.
Clin Cancer Res ; 23(20): 6128-6137, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-28733442

ABSTRACT

Purpose: We evaluated biodistribution and tumor targeting of 89Zr-lumretuzumab before and during treatment with lumretuzumab, a human epidermal growth factor receptor 3 (HER3)-targeting monoclonal antibody.Experimental Design: Twenty patients with histologically confirmed HER3-expressing tumors received 89Zr-lumretuzumab and underwent positron emission tomography (PET). In part A, 89Zr-lumretuzumab was given with additional, escalating doses of unlabeled lumretuzumab, and scans were performed 2, 4, and 7 days after injection to determine optimal imaging conditions. In part B, patients were scanned following tracer injection before (baseline) and after a pharmacodynamic (PD)-active lumretuzumab dose for saturation analysis. HER3 expression was determined immunohistochemically in skin biopsies. Tracer uptake was calculated as standardized uptake value (SUV).Results: Optimal PET conditions were found to be 4 and 7 days after administration of 89Zr-lumretuzumab with 100-mg unlabeled lumretuzumab. At baseline using 100-mg unlabeled lumretuzumab, the tumor SUVmax was 3.4 (±1.9) at 4 days after injection. SUVmean values for normal blood, liver, lung, and brain tissues were 4.9, 6.4, 0.9 and 0.2, respectively. Saturation analysis (n = 7) showed that 4 days after lumretuzumab administration, tumor uptake decreased by 11.9% (±8.2), 10.0% (±16.5), and 24.6% (±20.9) at PD-active doses of 400, 800, and 1,600 mg, respectively, when compared with baseline. Membranous HER3 was completely downregulated in paired skin biopsies already at and above 400-mg lumretuzumab.Conclusions: PET imaging showed biodistribution and tumor-specific 89Zr-lumretuzumab uptake. Although, PD-active lumretuzumab doses decreased 89Zr-lumretuzumab uptake, there was no clear evidence of tumor saturation by PET imaging as the tumor SUV did not plateau with increasing doses. Clin Cancer Res; 23(20); 6128-37. ©2017 AACR.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Neoplasms/diagnosis , Neoplasms/drug therapy , Positron-Emission Tomography , Radiopharmaceuticals , Zirconium , Aged , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Agents, Immunological/adverse effects , Antineoplastic Agents, Immunological/pharmacokinetics , Drug Monitoring , Female , Gene Expression , Humans , Male , Middle Aged , Molecular Targeted Therapy , Neoplasms/metabolism , Receptor, ErbB-3/antagonists & inhibitors , Receptor, ErbB-3/genetics , Receptor, ErbB-3/metabolism , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...