Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Research (Wash D C) ; 6: 0065, 2023.
Article in English | MEDLINE | ID: mdl-36930761

ABSTRACT

Multimode fibers hold great promise to advance data rates in optical communications but come with the challenge to compensate for modal crosstalk and mode-dependent losses, resulting in strong distortions. The holographic measurement of the transmission matrix enables not only correcting distortions but also harnessing these effects for creating a confidential data connection between legitimate communication parties, Alice and Bob. The feasibility of this physical-layer-security-based approach is demonstrated experimentally for the first time on a multimode fiber link to which the eavesdropper Eve is physically coupled. Once the proper structured light field is launched at Alice's side, the message can be delivered to Bob, and, simultaneously, the decipherment for an illegitimate wiretapper Eve is destroyed. Within a real communication scenario, we implement wiretap codes and demonstrate confidentiality by quantifying the level of secrecy. Compared to an uncoded data transmission, the amount of securely exchanged data is enhanced by a factor of 538. The complex light transportation phenomena that have long been considered limiting and have restricted the widespread use of multimode fiber are exploited for opening new perspectives on information security in spatial multiplexing communication systems.

2.
IEEE Trans Nanobioscience ; 22(2): 212-222, 2023 04.
Article in English | MEDLINE | ID: mdl-35635824

ABSTRACT

The limited storage capacity at the transmitters of a molecular communication (MC) system can affect the system's performance. One of the reasons for this limitation is the size restriction of the transmitter, which the storage must be replenished so that the transmitter has enough molecules for future transmission. This paper proposes a biologically inspired transmitter model based on neurons for MC whose storage charging and discharging follow differential equations. The proposed transmitter opens its outlet for a specific time in each time frame to exponentially release a portion of stored molecules to code bit-1 and remains silent to code bit-0. We analyze our model based on different transmission parameters. These parameters are the symbol duration, the release time duration, the storage capacity, and the release and replenishment rate of the storage. We find that the storage outlet must be open for a certain period within the time slot duration in order to improve the performance of the proposed system. Additionally, we demonstrate that determining the effect of storage capacity size can be important for practical MC due to the significant differences between the ideal transmitter and the proposed one, which have a limited size. We show that increases in the transmitter storage size can improve the system performance. As a result, taking a closer look at these practical transmitters is essential to solving the problems and challenges of molecular communication systems.


Subject(s)
Neurons , Time Factors
3.
Entropy (Basel) ; 24(1)2022 Jan 08.
Article in English | MEDLINE | ID: mdl-35052125

ABSTRACT

It is known that for a slow fading Gaussian wiretap channel without channel state information at the transmitter and with statistically independent fading channels, the outage probability of any given target secrecy rate is non-zero, in general. This implies that the so-called zero-outage secrecy capacity (ZOSC) is zero and we cannot transmit at any positive data rate reliably and confidentially. When the fading legitimate and eavesdropper channels are statistically dependent, this conclusion changes significantly. Our work shows that there exist dependency structures for which positive zero-outage secrecy rates (ZOSR) are achievable. In this paper, we are interested in the characterization of these dependency structures and we study the system parameters in terms of the number of observations at legitimate receiver and eavesdropper as well as average channel gains for which positive ZOSR are achieved. First, we consider the setting that there are two paths from the transmitter to the legitimate receiver and one path to the eavesdropper. We show that by introducing a proper dependence structure among the fading gains of the three paths, we can achieve a zero secrecy outage probability (SOP) for some positive secrecy rate. In this way, we can achieve a non-zero ZOSR. We conjecture that the proposed dependency structure achieves maximum ZOSR. To better understand the underlying dependence structure, we further consider the case where the channel gains are from finite alphabets and systematically and globally solve the ZOSC. In addition, we apply the rearrangement algorithm to solve the ZOSR for continuous channel gains. The results indicate that the legitimate link must have an advantage in terms of the number of antennas and average channel gains to obtain positive ZOSR. The results motivate further studies into the optimal dependency structures.

4.
Entropy (Basel) ; 22(6)2020 Jun 18.
Article in English | MEDLINE | ID: mdl-33286452

ABSTRACT

In order to make a warden, Willie, unaware of the existence of meaningful communications, there have been different schemes proposed including covert and stealth communications. When legitimate users have no channel advantage over Willie, the legitimate users may need additional secret keys to confuse Willie, if the stealth or covert communication is still possible. However, secret key generation (SKG) may raise Willie's attention since it has a public discussion, which is observable by Willie. To prevent Willie's attention, we consider the source model for SKG under a strong secrecy constraint, which has further to fulfill a stealth constraint. Our first contribution is that, if the stochastic dependence between the observations at Alice and Bob fulfills the strict more capable criterion with respect to the stochastic dependence between the observations at Alice and Willie or between Bob and Willie, then a positive stealthy secret key rate is identical to the one without the stealth constraint. Our second contribution is that, if the random variables observed at Alice, Bob, and Willie induced by the common random source form a Markov chain, then the key capacity of the source model SKG with the strong secrecy constraint and the stealth constraint is equal to the key capacity with the strong secrecy constraint, but without the stealth constraint. For the case of fast fading models, a sufficient condition for the existence of an equivalent model, which is degraded, is provided, based on stochastic orders. Furthermore, we present an example to illustrate our results.

5.
Sci Rep ; 10(1): 2740, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-32066782

ABSTRACT

The light propagation through a multimode fiber is used to increase information security during data transmission without the need for cryptographic approaches. The use of an inverse precoding method in a multimode fiber-optic communication network is based on mode-dependent losses on the physical layer. This leads to an asymmetry between legitimate (Bob) and illegitimate (Eve) recipients of messages, resulting in significant SNR advantage for Bob. In combination with dynamic mode channel changes, there are defined hurdles for Eve to reconstruct a sent message even in a worst-case scenario in which she knows the channel completely. This is the first time that physical layer security has been investigated in a fiber optical network based on measured transmission matrices. The results show that messages can be sent securely using traditional communication techniques. The technology introduced is a step towards the development of cyber physical systems with increased security.

6.
Entropy (Basel) ; 21(5)2019 May 15.
Article in English | MEDLINE | ID: mdl-33267211

ABSTRACT

The fifth generation (5G) and beyond wireless communications will transform many exciting applications and trigger massive data connections with private, confidential, and sensitive information. The security of wireless communications is conventionally established by cryptographic schemes and protocols in which the secret key distribution is one of the essential primitives. However, traditional cryptography-based key distribution protocols might be challenged in the 5G and beyond communications because of special features such as device-to-device and heterogeneous communications, and ultra-low latency requirements. Channel reciprocity-based key generation (CRKG) is an emerging physical layer-based technique to establish secret keys between devices. This article reviews CRKG when the 5G and beyond networks employ three candidate technologies: duplex modes, massive multiple-input multiple-output (MIMO) and mmWave communications. We identify the opportunities and challenges for CRKG and provide corresponding solutions. To further demonstrate the feasibility of CRKG in practical communication systems, we overview existing prototypes with different IoT protocols and examine their performance in real-world environments. This article shows the feasibility and promising performances of CRKG with the potential to be commercialized.

7.
PLoS One ; 11(12): e0168514, 2016.
Article in English | MEDLINE | ID: mdl-28030548

ABSTRACT

Networks are used for modeling numerous technical, social or biological systems. In order to better understand the system dynamics, it is a matter of great interest to identify the most important nodes within the network. For a large set of problems, whether it is the optimal use of available resources, spreading information efficiently or even protection from malicious attacks, the most important node is the most influential spreader, the one that is capable of propagating information in the shortest time to a large portion of the network. Here we propose the Node Imposed Response (NiR), a measure which accurately evaluates node spreading power. It outperforms betweenness, degree, k-shell and h-index centrality in many cases and shows the similar accuracy to dynamics-sensitive centrality. We utilize the system-theoretic approach considering the network as a Linear Time-Invariant system. By observing the system response we can quantify the importance of each node. In addition, our study provides a robust tool set for various protective strategies.


Subject(s)
Algorithms , Computer Simulation , Linear Models , Neural Networks, Computer , Humans , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL