Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 925
Filter
1.
J. optom. (Internet) ; 17(3): [100512], jul.-sept2024. graf, tab
Article in English | IBECS | ID: ibc-231875

ABSTRACT

Purpose: In children under 20 years, refractive development targets a cycloplegic refractive error of +0.5 to +1.5D, while presbyopes over 40 years generally have non-cycloplegic errors of ≥ +1D. Some papers suggest these periods are separated by a period of myopic refractive error (i.e., ≤ –0.50D), but this remains unclear. Hence, this work investigates the mean cycloplegic refractive error in adults aged between 20 – 40 years. Methods: In 2002 a cross-sectional study with stratified cluster sampling was performed on the population of Tehran, providing cycloplegic and non-cycloplegic refractive error data for the right eyes of 3,576 participants, aged 30.6 ± 18.6 years (range: 1–86 years). After grouping these data into age groups of 5 years, the refractive error histogram of each group was fitted to a Bigaussian function. The mean of the central, emmetropized peak was used to estimate the mean refractive error without the influence of myopia. Results: The mean cycloplegic refractive error at the emmetropized peak decreased from +1.10 ± 0.11D (95 % confidence interval) to +0.50 ± 0.04D before 20 years and remains stable at that value until the age of 50 years. The non-cycloplegic refractive error also sees a stable phase at 0.00 ± 0.04D between 15 – 45 years. After 45 – 50 years both cycloplegic and non-cycloplegic refractive error become more hypermetropic over time, +1.14 ± 0.12D at 75 years. Conclusions: The cycloplegic refractive error in adults is about +0.50D between 20 – 50 years, disproving the existence of the myopic period at those ages.(AU)


Subject(s)
Humans , Male , Female , Adult , Vision, Ocular , Vision Tests , Refractive Errors , Emmetropia , Cross-Sectional Studies , Iran
2.
J Vis ; 24(7): 3, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38967946

ABSTRACT

It was recently established that the axial power, the refractive power required by the eye for a sharp retinal image in an eye of a certain axial length, and the total refractive power of the eye may both be described by a bi-exponential function as a function of age (Rozema, 2023). Inspired by this result, this work explores whether these bi-exponential functions are able to simulate the various known courses of refractive development described in the literature, such as instant emmetropization, persistent hypermetropia, developing hypermetropia, myopia, instant homeostasis, modulated development, or emmetropizing hypermetropes. Moreover, the equations can be adjusted to match the refractive development of school-age myopia and pseudophakia up to the age of 20 years. All of these courses closely resemble those reported in the previous literature while simultaneously providing estimates for the underlying changes in axial and whole eye power.


Subject(s)
Emmetropia , Hyperopia , Myopia , Refraction, Ocular , Humans , Refraction, Ocular/physiology , Myopia/physiopathology , Child , Adolescent , Hyperopia/physiopathology , Young Adult , Emmetropia/physiology , Child, Preschool , Axial Length, Eye , Pseudophakia/physiopathology , Adult , Eye/growth & development , Aging/physiology , Refractive Errors/physiopathology
3.
Int J Sports Physiol Perform ; : 1-5, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38950887

ABSTRACT

PURPOSE: The purpose of this survey was to create a list of essential historical and contemporary readings for undergraduate and graduate students in the field of exercise physiology. METHODS: Fifty-two exercise physiologists/sport scientists served as referees, and each nominated ∼25 papers for inclusion in the list. In total, 396 papers were nominated by the referees. This list was then sent back to the referees, with the instructions to nominate the "100 essential papers in sports and exercise physiology." RESULTS: The referees cast 4722 votes. The 100 papers with the highest number of votes received 51% (2406) of the total number of votes. A total of 37 papers in the list of "100 essential papers" were published >50 years ago, and 63 papers were published since 1973. CONCLUSIONS: This list of essential studies will provide a perspective on contemporary studies, the "giant's shoulders" to enable young scholars to "see further" or to understand where they have "come from." This compilation is also meant to impress on students that, given the (lack of) technology available in the past, some of the early science required enormous intuitive leaps on the part of historical scientists.

4.
Int J Sports Physiol Perform ; : 1-11, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871342

ABSTRACT

PURPOSE: To investigate how cycling time-trial (TT) performance changes over a cycling season, both in a "fresh" state and in a "fatigued" state (durability). Additionally, the aim was to explore whether these changes are related to changes in underlying physiological factors such as gross efficiency, energy expenditure (EE), and substrate oxidation (fat oxidation [FatOx] and carbohydrate oxidation [CarbOx]). METHODS: Sixteen male semiprofessional cyclists visited the laboratory on 3 occasions during a cycling season (PRE, START, and IN) and underwent a performance test in both fresh and fatigued states (after 38.1 [4.9] kJ/kg), containing a submaximal warm-up for the measurement of gross efficiency, EE, FatOx, and CarbOx and a maximal TT of 1 (TT1min) and 10 minutes (TT10min). Results were compared across states (fresh vs fatigued) and periods (PRE, START, and IN). RESULTS: The average power output (PO) in TT1min decreased (P < .05) from fresh to fatigued state across all observed periods, whereas there was no change in the PO in TT10min. Over the course of the season, the PO in TT1min in the fatigued state improved more compared with the PO in TT1min in the fresh state. Furthermore, while EE did not significantly change, there was an increase in FatOx and a decrease in CarbOx toward the fatigued state. These changes diminished during the cycling season (IN), indicating a greater contribution of CarbOx in the fatigued state. CONCLUSIONS: TT1min performance is more sensitive to fatigue compared with TT10min. Also, during a cycling season, durability improves more when compared with fresh maximal POs, which is also observed in the changes in substrate oxidation.

5.
Int J Sports Physiol Perform ; : 1-7, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38917986

ABSTRACT

INTRODUCTION: In distance running, pacing is characterized by changes in speed, leading to runners dropping off the leader's pace until a few remain to contest victory with a final sprint. Pacing behavior has been well studied over the last 30 years, but much remains unknown. It might be related to finishing position, finishing time, and dependent on critical speed (CS), a surrogate of physiologic capacity. We hypothesized a relationship between CS and the distance at which runners "fell behind" and "let go" from the leader or were "outsprinted" as contributors to performance. METHODS: 100-m split times were obtained for athletes in the men's 10,000-m at the 2008 Olympics (N = 35). Split times were individually compared with the winner at the point of "falling behind" (successive split times progressively slower than the winner), "letting go" (large increase in time for distance compared with winner), or "outsprinted" (falling behind despite active acceleration) despite being with the leader with 400 m remaining. RESULTS: Race times ranged between 26:55 and 29:23 (world record = 26:17). There were 3 groups who fell behind at ∼1000 (n = 11), ∼6000 (n = 16), and ∼9000 m (n = 2); let go at ∼4000 (n = 10), ∼7000 (n = 14), and ∼9500 m (n = 5); or were outkicked (n = 6). There was a moderate correlation between CS and finishing position (r = .82), individual mean pace (r = .79), "fell behind" distance (r = .77), and "let go" distance (r = .79). D' balance was correlated with performance in the last 400 m (r = .87). CONCLUSIONS: Athletes displayed distinct patterns of falling behind and letting go. CS serves as a moderate predictor of performance and final placing. Final placing during the sprint is related to preservation of D' balance.

6.
Article in English | MEDLINE | ID: mdl-38888560

ABSTRACT

BACKGROUND: This study investigates if countries are more focused on certain specializations (one day, climb, sprint, time trial [TT] and grand tour [GC]) in male professional road cycling and if this is possibly linked to the countries landscape (for example, does a mountainous country have more climbers?) and anthropometric characteristics (does the mountainous country also have lighter cyclists?) of their cyclists. METHODS: Body weight, height, procyclingstats (PCS) points per specialty were gathered from 1810 professional cyclists out of 15 countries, as well as the elevation span of those countries. To compare the anthropometric differences between different countries, height was normalized based on the average height of the countries' population, while BMI was used as a correction for body weight. RESULTS: The average anthropometrics (body weight and height) of professional cyclists in a country are related to the relative number of PCS points collected in GC, sprint and climb races. This means that when a country has shorter and lighter cyclists, they score relatively better in GC and climb races and vice versa for sprint races, which indicates that countries are focused on certain specialties. However, these relationships were not found for TT and one day PCS points. In addition, countries with larger cyclists have a less mountainous (elevation span) landscape compared to countries with lighter cyclists. CONCLUSIONS: The results suggest a selection bias towards smaller/lighter or taller/heavier cyclists in various countries, probably caused by the terrain of their home country, leading to missed opportunities for some cyclists to reach professional level.

7.
J Appl Crystallogr ; 57(Pt 3): 649-658, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38846772

ABSTRACT

Processing of single-crystal X-ray diffraction data from area detectors can be separated into two steps. First, raw intensities are obtained by integration of the diffraction images, and then data correction and reduction are performed to determine structure-factor amplitudes and their uncertainties. The second step considers the diffraction geometry, sample illumination, decay, absorption and other effects. While absorption is only a minor effect in standard macromolecular crystallography (MX), it can become the largest source of uncertainty for experiments performed at long wavelengths. Current software packages for MX typically employ empirical models to correct for the effects of absorption, with the corrections determined through the procedure of minimizing the differences in intensities between symmetry-equivalent reflections; these models are well suited to capturing smoothly varying experimental effects. However, for very long wavelengths, empirical methods become an unreliable approach to model strong absorption effects with high fidelity. This problem is particularly acute when data multiplicity is low. This paper presents an analytical absorption correction strategy (implemented in new software AnACor) based on a volumetric model of the sample derived from X-ray tomography. Individual path lengths through the different sample materials for all reflections are determined by a ray-tracing method. Several approaches for absorption corrections (spherical harmonics correction, analytical absorption correction and a combination of the two) are compared for two samples, the membrane protein OmpK36 GD, measured at a wavelength of λ = 3.54 Å, and chlorite dismutase, measured at λ = 4.13 Å. Data set statistics, the peak heights in the anomalous difference Fourier maps and the success of experimental phasing are used to compare the results from the different absorption correction approaches. The strategies using the new analytical absorption correction are shown to be superior to the standard spherical harmonics corrections. While the improvements are modest in the 3.54 Šdata, the analytical absorption correction outperforms spherical harmonics in the longer-wavelength data (λ = 4.13 Å), which is also reflected in the reduced amount of data being required for successful experimental phasing.

8.
Int J Cardiol Heart Vasc ; 52: 101385, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38694268

ABSTRACT

Background: The recent Cardiovascular Disease in Adolescents with Chronic Disease (CDACD) study showed enhanced aortic stiffness and wall thickness in adolescents with various chronic disorders. Enhanced aortic stiffness can increase left ventricular (LV) afterload and trigger a cascade of adverse arterioventricular interaction. Here, we investigate the relation between aortic changes and LV function in the CDACD study participants. Methods: This cross-sectional study included 114 adolescents 12-18 years old with cystic fibrosis (CF, n = 24), corrected coarctation of the aorta (CoA, n = 25), juvenile idiopathic arthritis (JIA, n = 20), obesity (n = 20), and healthy controls (n = 25). Aortic pulse wave velocity (PWV), which reflects aortic stiffness, and aortic wall thickness (AWT) were assessed with cardiovascular magnetic resonance imaging (CMR). Echocardiography was employed to study conventional markers of LV function, as well as LV global longitudinal strain (LVGLS), which is an established (pre)clinical marker of LV dysfunction. Results: First, aortic PWV and AWT were increased in all chronic disease groups, compared to controls. Second, in adolescents with CoA, JIA, and obesity, echocardiography showed a decreased LVGLS, while LV dimensions and conventional LV function markers were similar to controls. Third, multivariable linear regression identified aortic PWV as the most important determinant of their decreased LVGLS (standardized ß -0.522, p < 0.001). Conclusions: The decreased LVGLS in several adolescent chronic disease groups was associated with enhanced aortic PWV, which might reflect adverse arterioventricular interaction. Whether the decreased LVGLS in the chronic disease groups could negatively impact their long-term cardiovascular outcomes requires further study.

9.
Ophthalmic Physiol Opt ; 44(5): 1000-1009, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38666416

ABSTRACT

PURPOSE: To present a paraxial method to estimate the influence of variations in ocular biometry on changes in refractive error (S) at a population level and apply this method to literature data. METHODS: Error propagation was applied to two methods of eye modelling, referred to as the simple method and the matrix method. The simple method defines S as the difference between the axial power and the whole-eye power, while the matrix method uses more accurate ray transfer matrices. These methods were applied to literature data, containing the mean ocular biometry data from the SyntEyes model, as well as populations of premature infants with or without retinopathy, full-term infants, school children and healthy and diabetic adults. RESULTS: Applying these equations to 1000 SyntEyes showed that changes in axial length provided the most important contribution to the variations in refractive error (57%-64%), followed by lens power/gradient index power (16%-31%) and the anterior corneal radius of curvature (10%-13%). All other components of the eye contributed <4%. For young children, the largest contributions were made by variations in axial length, lens and corneal power for the simple method (67%, 23% and 8%, respectively) and by variations in axial length, gradient lens power and anterior corneal curvature for the matrix method (55%, 21% and 14%, respectively). During myopisation, the influence of variations in axial length increased from 54.5% to 73.4%, while changes in corneal power decreased from 9.82% to 6.32%. Similarly, for the other data sets, the largest contribution was related to axial length. CONCLUSIONS: This analysis confirms that the changes in ocular refraction were mostly associated with variations in axial length, lens and corneal power. The relative contributions of the latter two varied, depending on the particular population.


Subject(s)
Axial Length, Eye , Biometry , Refraction, Ocular , Refractive Errors , Humans , Refractive Errors/physiopathology , Refractive Errors/diagnosis , Biometry/methods , Refraction, Ocular/physiology , Child , Axial Length, Eye/diagnostic imaging , Cornea/diagnostic imaging , Adult , Infant , Child, Preschool , Infant, Newborn , Male , Female , Adolescent
10.
PeerJ ; 12: e17161, 2024.
Article in English | MEDLINE | ID: mdl-38560466

ABSTRACT

The life history of a parasite describes its partitioning of assimilated resources into growth, reproduction, and transmission effort, and its precise timing of developmental events. The life cycle, in contrast, charts the sequence of morphological stages from feeding to the transmission forms. Phenotypic plasticity in life history traits can reveal how parasites confront variable environments within hosts. Within the protist phylum Apicomplexa major clades include the malaria parasites, coccidians, and most diverse, the gregarines (with likely millions of species). Studies on life history variation of gregarines are rare. Therefore, life history traits were examined for the gregarine Monocystis perplexa in its host, the invasive earthworm Amynthas agrestis at three sites in northern Vermont, United States of America. An important value of this system is the short life-span of the hosts, with only seven months from hatching to mass mortality; we were thus able to examine life history variation during the entire life cycle of both host and parasite. Earthworms were collected (N = 968 over 33 sample periods during one host season), then parasites of all life stages were counted, and sexual and transmission stages measured, for each earthworm. All traits varied substantially among individual earthworm hosts and across the sites. Across sites, timing of first appearance of infected earthworms, date when transmission stage (oocysts packed within gametocysts) appeared, date when number of both feeding (trophic) cells and gametocysts were at maximum, and date when 100% of earthworms were infected differed from 2-8 weeks, surprising variation for a short season available for parasite development. The maximal size of mating cells varied among hosts and across sites and this is reflected in the number of oocysts produced by the gametocyst. A negative trade-off was observed for the number of oocysts and their size. Several patterns were striking: (1) Prevalence reached 100% at all sites by mid season, only one to three weeks after parasites first appeared in the earthworms. (2) The number of parasites per host was large, reaching 300 × 103 cells in some hosts, and such high numbers were present even when parasites first appeared in the host. (3) At one site, few infected earthworms produced any oocysts. (4) The transmission rate to reach such high density of parasites in hosts needed to be very high for a microbe, from >0.33% to >34.3% across the three sites. Monocystis was one of the first protist parasites to have its life cycle described (early 19th century), but these results suggest the long-accepted life cycle of Monocystis could be incomplete, such that the parasites may be transmitted vertically (within the earthworm's eggs) as well as horizontally (leading to 100% prevalence) and merogony (asexual replication) could be present, not recognized for Monocystis, leading to high parasitemia even very early in the host's season.


Subject(s)
Apicomplexa , Life History Traits , Oligochaeta , Parasites , Animals , Oligochaeta/parasitology , Reproduction , Life Cycle Stages , Oocysts
11.
J Magn Reson Imaging ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38558490

ABSTRACT

BACKGROUND: Automated 4D flow MRI valvular flow quantification without time-consuming manual segmentation might improve workflow. PURPOSE: Compare automated valve segmentation (AS) to manual (MS), and manually corrected automated segmentation (AMS), in corrected atrioventricular septum defect (c-AVSD) patients and healthy volunteers, for assessing net forward volume (NFV) and regurgitation fraction (RF). STUDY TYPE: Retrospective. POPULATION: 27 c-AVSD patients (median, 23 years; interquartile range, 16-31 years) and 24 healthy volunteers (25 years; 12.5-36.5 years). FIELD STRENGTH/SEQUENCE: Whole-heart 4D flow MRI and cine steady-state free precession at 3T. ASSESSMENT: After automatic valve tracking, valve annuli were segmented on time-resolved reformatted trans-valvular velocity images by AS, MS, and AMS. NFV was calculated for all valves, and RF for right and left atrioventricular valves (RAVV and LAVV). NFV variation (standard deviation divided by mean NFV) and NFV differences (NFV difference of a valve vs. mean NFV of other valves) expressed internal NFV consistency. STATISTICAL TESTS: Comparisons between methods were assessed by Wilcoxon signed-rank tests, and intra/interobserver variability by intraclass correlation coefficients (ICCs). P < 0.05 was considered statistically significant, with multiple testing correction. RESULTS: AMS mean analysis time was significantly shorter compared with MS (5.3 ± 1.6 minutes vs. 9.1 ± 2.5 minutes). MS NFV variation (6.0%) was significantly smaller compared with AMS (6.3%), and AS (8.2%). Median NFV difference of RAVV, LAVV, PV, and AoV between segmentation methods ranged from -0.7-1.0 mL, -0.5-2.8 mL, -1.1-3.6 mL, and - 3.1--2.1 mL, respectively. Median RAVV and LAVV RF, between 7.1%-7.5% and 3.8%-4.3%, respectively, were not significantly different between methods. Intraobserver/interobserver agreement for AMS and MS was strong-to-excellent for NFV and RF (ICC ≥0.88). DATA CONCLUSION: MS demonstrates strongest internal consistency, followed closely by AMS, and AS. Automated segmentation, with or without manual correction, can be considered for 4D flow MRI valvular flow quantification. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 3.

13.
BMC Med Educ ; 24(1): 221, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429755

ABSTRACT

BACKGROUND: Many factors influencing residency attrition are identified in the literature, but what role these factors play and how they influence each other remains unclear. Understanding more about the interaction between these factors can provide background to put the available evidence into perspective and provide tools to reduce attrition. The aim of this study was therefore to develop a model that describes voluntary residency attrition. METHODS: Semi-structured interviews were held with a convenient sample of orthopaedic surgery residents in the Netherlands who dropped out of training between 2000 and 2018. Transcripts were analysed using a constructivist grounded theory approach. Concepts and themes were identified by iterative constant comparison. RESULTS: Seventeen interviews with former residents were analysed and showed that reasons for voluntary attrition were different for each individual and often a result of a cumulative effect. Individual expectations and needs determine residents' experiences with the content of the profession, the professional culture and the learning climate. Personal factors like previous clinical experiences, personal circumstances and personal characteristics influence expectations and needs. Specific aspects of the residency programme contributing to attrition were type of patient care, required skills for the profession, work-life balance and interpersonal interaction. CONCLUSIONS: This study provides a model for voluntary resident attrition showing the factors involved and how they interact. This model places previous research into perspective, gives implications for practice on the (im)possibilities of preventing attrition and opens possibilities for further research into resident attrition.


Subject(s)
Internship and Residency , Humans , Qualitative Research , Interpersonal Relations , Work-Life Balance , Learning
15.
Sci Rep ; 14(1): 4004, 2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38369631

ABSTRACT

This research uses mathematical modelling to evaluate the influence of the ligament of Wieger on the crystalline lens shape at rest, and during accommodation. An axisymmetric model of the anterior segment, including the ligament of Wieger, was created using the finite element method. Different conditions including variations of stiffness and positions of the ligament, with and without the ligament, were tested to see how they affected lens curvature and optical power. Adding the ligament of Wieger to the simulation had a noticeable impact on the optical power of the lens, particularly on the posterior surface power and total power. Ligament stiffness and width significant influenced the accommodative range of the eye by - 0.95D and - 2.39D for ligaments with the same and 3× the stiffness of the capsular bag, respectively. Ligament width and inner diameter had negligible effects on lens thickness but did have significant effects on posterior surface power and accommodation. In this simulation, we found that the ligament of Wieger can significantly affect the lens shape, both at rest and during accommodation, and may need to be considered in lens models.

16.
Ophthalmic Physiol Opt ; 44(4): 746-756, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38389207

ABSTRACT

PURPOSE: The goal was to use SyntEyes modelling to estimate the allowable alignment error of wavefront-guided rigid contact lens corrections for a range of normal and keratoconic eye aberration structures to keep objectively measured visual image quality at or above average levels of well-corrected normal eyes. Secondary purposes included determining the required radial order of correction, whether increased radial order of the corrections further constrained the allowable alignment error and how alignment constraints vary with keratoconus severity. METHODS: Building on previous work, 20 normal SyntEyes and 20 keratoconic SyntEyes were fitted with optimised wavefront-guided rigid contact lens corrections targeting between three and eight radial orders that drove visual image quality, as measured objectively by the visual Strehl ratio, to near 1 (best possible) over a 5-mm pupil for the aligned position. The resulting wavefront-guided contact lens was then allowed to translate up to ±1 mm in the x- and y-directions and rotate up ±15°. RESULTS: Allowable alignment error changed as a function of the magnitude of aberration structure to be corrected, which depends on keratoconus severity. This alignment error varied only slightly with the radial order of correction above the fourth radial order. To return the keratoconic SyntEyes to average levels of visual image quality depended on maximum anterior corneal curvature (Kmax). Acceptable tolerances for misalignment that returned keratoconic visual image quality to average normal levels varied between 0.29 and 0.63 mm for translation and approximately ±6.5° for rotation, depending on the magnitude of the aberration structure being corrected. CONCLUSIONS: Allowable alignment errors vary as a function of the aberration structure being corrected, the desired goal for visual image quality and as a function of keratoconus severity.


Subject(s)
Contact Lenses , Corneal Topography , Keratoconus , Visual Acuity , Humans , Keratoconus/physiopathology , Keratoconus/diagnosis , Corneal Topography/methods , Adult , Female , Male , Visual Acuity/physiology , Young Adult , Corneal Wavefront Aberration/physiopathology , Corneal Wavefront Aberration/diagnosis , Refraction, Ocular/physiology , Cornea/diagnostic imaging , Cornea/physiopathology
17.
J Fungi (Basel) ; 10(1)2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38248960

ABSTRACT

Whole genome sequencing (WGS) is widely used for outbreak analysis of bacteriology and virology but is scarcely used in mycology. Here, we used WGS for genotyping Aspergillus fumigatus isolates from a potential Aspergillus outbreak in an intensive care unit (ICU) during construction work. After detecting the outbreak, fungal cultures were performed on all surveillance and/or patient respiratory samples. Environmental samples were obtained throughout the ICU. WGS was performed on 30 isolates, of which six patient samples and four environmental samples were related to the outbreak, and twenty samples were unrelated, using the Illumina NextSeq 550. A SNP-based phylogenetic tree was created from outbreak samples and unrelated samples. Comparative analysis (WGS and short tandem repeats (STRs), microsatellite loci analysis) showed that none of the strains were related to each other. The lack of genetic similarity suggests the accumulation of Aspergillus spores in the hospital environment, rather than a single source that supported growth and reproduction of Aspergillus fumigatus. This supports the hypothesis that the Aspergillus outbreak was likely caused by release of Aspergillus fumigatus spores during construction work. Indeed, no new Aspergillus cases were observed in the ICU after cessation of construction. This study demonstrates that WGS is a suitable technique for examining inter-strain relatedness of Aspergillus fumigatus in the setting of an outbreak investigation.

18.
J Optom ; 17(3): 100512, 2024.
Article in English | MEDLINE | ID: mdl-38244522

ABSTRACT

PURPOSE: In children under 20 years, refractive development targets a cycloplegic refractive error of +0.5 to +1.5D, while presbyopes over 40 years generally have non-cycloplegic errors of ≥ +1D. Some papers suggest these periods are separated by a period of myopic refractive error (i.e., ≤ -0.50D), but this remains unclear. Hence, this work investigates the mean cycloplegic refractive error in adults aged between 20 - 40 years. METHODS: In 2002 a cross-sectional study with stratified cluster sampling was performed on the population of Tehran, providing cycloplegic and non-cycloplegic refractive error data for the right eyes of 3,576 participants, aged 30.6±18.6 years (range: 1-86 years). After grouping these data into age groups of 5 years, the refractive error histogram of each group was fitted to a Bigaussian function. The mean of the central, emmetropized peak was used to estimate the mean refractive error without the influence of myopia. RESULTS: The mean cycloplegic refractive error at the emmetropized peak decreased from +1.10±0.11D (95 % confidence interval) to +0.50±0.04D before 20 years and remains stable at that value until the age of 50 years. The non-cycloplegic refractive error also sees a stable phase at 0.00±0.04D between 15 - 45 years. After 45 - 50 years both cycloplegic and non-cycloplegic refractive error become more hypermetropic over time, +1.14±0.12D at 75 years. CONCLUSIONS: The cycloplegic refractive error in adults is about +0.50D between 20 - 50 years, disproving the existence of the myopic period at those ages.


Subject(s)
Emmetropia , Mydriatics , Refractive Errors , Humans , Adult , Cross-Sectional Studies , Male , Iran/epidemiology , Female , Middle Aged , Young Adult , Adolescent , Aged , Refractive Errors/physiopathology , Refractive Errors/epidemiology , Emmetropia/physiology , Mydriatics/administration & dosage , Aged, 80 and over , Child , Child, Preschool , Refraction, Ocular/physiology , Infant , Myopia/physiopathology , Myopia/epidemiology
19.
J Am Heart Assoc ; 13(3): e033122, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38293946

ABSTRACT

BACKGROUND: Kidney disease is the most important predictor of death in patients with a Fontan circulation, yet its clinical and hemodynamic correlates have not been well established. METHODS AND RESULTS: A total of 53 ambulatory patients with a Fontan circulation (median age, 16.2 years, 52.8% male patients) underwent advanced cardiovascular magnetic resonance assessment, including 4-dimensional flow imaging and computational fluid dynamics. Estimated glomerular filtration rate (eGFR) <90 mL/min per 1.73 m2 was observed in 20.8% and albumin-to-creatinine ratio >3 mg/mmol in 39.6%. The average eGFR decline rate was -1.83 mL/min per 1.73 m2 per year (95% CI, -2.67 to -0.99; P<0.001). Lower eGFR was associated with older age, larger body surface area at examination, longer time since Fontan procedure, and lower systemic ventricular ejection fraction. Higher albumin-to-creatinine ratio was associated with absence of fenestration at the Fontan operation, and older age and lower systemic ventricular ejection fraction at the assessment. Lower cross-sectional area of the Fontan conduit indexed to flow (r=0.32, P=0.038), higher inferior vena cava-conduit velocity mismatch factor (r=-0.35, P=0.022), higher kinetic energy indexed to flow in the total cavopulmonary connection (r=-0.59, P=0.005), and higher total cavopulmonary connection resistance (r=-0.42, P=0.005 at rest; r=-0.43, P=0.004 during exercise) were all associated with lower eGFR but not with albuminuria. CONCLUSIONS: Kidney dysfunction and albuminuria are common among clinically well adolescents and young adults with a Fontan circulation. Advanced cardiovascular magnetic resonance-derived metrics indicative of declining Fontan hemodynamics are associated with eGFR and might serve as targets to improve kidney health. Albuminuria might be driven by other factors that need further investigation.


Subject(s)
Fontan Procedure , Heart Defects, Congenital , Adolescent , Young Adult , Humans , Male , Female , Creatinine , Albuminuria/etiology , Heart Defects, Congenital/diagnostic imaging , Heart Defects, Congenital/surgery , Hemodynamics , Fontan Procedure/adverse effects , Fontan Procedure/methods , Kidney , Magnetic Resonance Spectroscopy , Albumins
20.
J Magn Reson Imaging ; 59(3): 1056-1067, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37309838

ABSTRACT

BACKGROUND: Aortic flow parameters can be quantified using 4D flow MRI. However, data are sparse on how different methods of analysis influence these parameters and how these parameters evolve during systole. PURPOSE: To assess multiphase segmentations and multiphase quantification of flow-related parameters in aortic 4D flow MRI. STUDY TYPE: Prospective. POPULATION: 40 healthy volunteers (50% male, 28.9 ± 5.0 years) and 10 patients with thoracic aortic aneurysm (80% male, 54 ± 8 years). FIELD STRENGTH/SEQUENCE: 4D flow MRI with a velocity encoded turbo field echo sequence at 3 T. ASSESSMENT: Phase-specific segmentations were obtained for the aortic root and the ascending aorta. The whole aorta was segmented in peak systole. In all aortic segments, time to peak (TTP; for flow velocity, vorticity, helicity, kinetic energy, and viscous energy loss) and peak and time-averaged values (for velocity and vorticity) were calculated. STATISTICAL TESTS: Static vs. phase-specific models were assessed using Bland-Altman plots. Other analyses were performed using phase-specific segmentations for aortic root and ascending aorta. TTP for all parameters was compared to TTP of flow rate using paired t-tests. Time-averaged and peak values were assessed using Pearson correlation coefficient. P < 0.05 was considered statistically significant. RESULTS: In the combined group, velocity in static vs. phase-specific segmentations differed by 0.8 cm/sec for the aortic root, and 0.1 cm/sec (P = 0.214) for the ascending aorta. Vorticity differed by 167 sec-1 mL-1 (P = 0.468) for the aortic root, and by 59 sec-1 mL-1 (P = 0.481) for the ascending aorta. Vorticity, helicity, and energy loss in the ascending aorta, aortic arch, and descending aorta peaked significantly later than flow rate. Time-averaged velocity and vorticity values correlated significantly in all segments. DATA CONCLUSION: Static 4D flow MRI segmentation yields comparable results as multiphase segmentation for flow-related parameters, eliminating the need for time-consuming multiple segmentations. However, multiphase quantification is necessary for assessing peak values of aortic flow-related parameters. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 3.


Subject(s)
Aorta , Hemodynamics , Humans , Male , Female , Prospective Studies , Aorta, Thoracic , Magnetic Resonance Imaging/methods , Blood Flow Velocity
SELECTION OF CITATIONS
SEARCH DETAIL
...