Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci Alliance ; 7(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38316462

ABSTRACT

Bidirectional interactions between the immune system and the gut microbiota are key contributors to various physiological functions. Immune-associated diseases such as cancer and autoimmunity, and efficacy of immunomodulatory therapies, have been linked to microbiome variation. Although COVID-19 infection has been shown to cause microbial dysbiosis, it remains understudied whether the inflammatory response associated with vaccination also impacts the microbiota. Here, we investigate the temporal impact of COVID-19 vaccination on the gut microbiome in healthy and immuno-compromised individuals; the latter included patients with primary immunodeficiency and cancer patients on immunomodulating therapies. We find that the gut microbiome remained remarkably stable post-vaccination irrespective of diverse immune status, vaccine response, and microbial composition spanned by the cohort. The stability is evident at all evaluated levels including diversity, phylum, species, and functional capacity. Our results indicate the resilience of the gut microbiome to host immune changes triggered by COVID-19 vaccination and suggest minimal, if any, impact on microbiome-mediated processes. These findings encourage vaccine acceptance, particularly when contrasted with the significant microbiome shifts observed during COVID-19 infection.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Neoplasms , Humans , COVID-19 Vaccines , COVID-19/prevention & control , Vaccination
2.
Article in English | MEDLINE | ID: mdl-37578899

ABSTRACT

One novel Streptococcus strain (SQ9-PEAT) and two novel Staphylococcus strains (SQ8-PEAT and GRT3T) were isolated from faeces of a wild eastern grey squirrel. The strains were non-spore-forming, non-motile Gram-positive cocci, facultative anaerobes. The genomes for these strains were sequenced. The 16S rRNA gene and core-genome-based phylogenetic analyses showed that strain SQ9-PEAT was closely related to Streptococcus hyointestinalis, strain SQ8-PEAT to Staphylococcus pettenkoferi and Staphylococcus argensis, and strain GRT3T to Staphylococcus rostri, Staphylococcus muscae and Staphylococcus microti. Average nucleotide identity and pairwise digital DNA-DNA hybridization values calculated for these novel strains compared to type strain genomes of phylogenetically related species within the genera Streptococcus and Staphylococcus clearly revealed that strain SQ9-PEAT represents a novel species of the genus Streptococcus and strains SQ8-PEAT and GRT3T represent two novel species of the genus Staphylococcus. Phenotypical features of these novel type strains differed from the features of the type strains of other phylogenetically related species. MALDI-TOF mass spectrometry supported identification of these novel species. Based on these data, we propose one novel species of the genus Streptococcus, for which the name Streptococcus sciuri sp. nov. with the type strain SQ9-PEAT (=DSM 114656T=CCUG 76426T=NCTC 14727T) is proposed, and two novel species of the genus Staphylococcus, for which the names Staphylococcus marylandisciuri sp. nov. with the type strain SQ8-PEAT (=DSM 114685T=CCUG 76423T=NCTC 14723T) and Staphylococcus americanisciuri sp. nov. with the type strain GRT3T (=DSM 114696T=CCUG 76427T=NCTC 14722T) are proposed. The genome G+C contents are 38.29, 36.49 and 37.26 mol% and complete draft genome sizes are 1 692 266, 2 371 088 and 2 237 001 bp for strains SQ9-PEAT, SQ8-PEAT and GRT3T, respectively.


Subject(s)
Fatty Acids , Streptococcus , Phylogeny , RNA, Ribosomal, 16S/genetics , Base Composition , DNA, Bacterial/genetics , Bacterial Typing Techniques , Fatty Acids/chemistry , Sequence Analysis, DNA , Feces , Streptococcus/genetics , Staphylococcus
3.
Nat Commun ; 14(1): 3292, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37369658

ABSTRACT

Age-associated B cells (ABC) accumulate with age and in individuals with different immunological disorders, including cancer patients treated with immune checkpoint blockade and those with inborn errors of immunity. Here, we investigate whether ABCs from different conditions are similar and how they impact the longitudinal level of the COVID-19 vaccine response. Single-cell RNA sequencing indicates that ABCs with distinct aetiologies have common transcriptional profiles and can be categorised according to their expression of immune genes, such as the autoimmune regulator (AIRE). Furthermore, higher baseline ABC frequency correlates with decreased levels of antigen-specific memory B cells and reduced neutralising capacity against SARS-CoV-2. ABCs express high levels of the inhibitory FcγRIIB receptor and are distinctive in their ability to bind immune complexes, which could contribute to diminish vaccine responses either directly, or indirectly via enhanced clearance of immune complexed-antigen. Expansion of ABCs may, therefore, serve as a biomarker identifying individuals at risk of suboptimal responses to vaccination.


Subject(s)
COVID-19 , Immunity, Humoral , Humans , Immune Checkpoint Inhibitors , COVID-19 Vaccines , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Antigen-Antibody Complex , Antibodies, Viral
4.
Curr Microbiol ; 80(8): 253, 2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37354372

ABSTRACT

A novel Neisseria strain, designated CSL10203-ORH2T, was isolated from the oropharynx of a wild California sea lion (Zalophus californianus) that was admitted to The Marine Mammal Center in California, USA. The strain was originally cultured from an oropharyngeal swab on BD Phenylethyl Alcohol (PEA) agar with 5% sheep blood under aerobic conditions. Phylogenetic analyses based on 16S rRNA, rplF, and rpoB gene sequences and the core genome sequences indicated that the strain was most closely related to only N. zalophi CSL 7565T. The average nucleotide identity and digital DNA-DNA hybridization values between strain CSL10203-ORH2T and the closely related species N. zalophi CSL 7565T were 89.84 and 39.70%, respectively, which were significantly lower than the accepted species-defined thresholds for describing novel prokaryotic species at the genomic level. Both type strains were phenotypically similar but can be easily and unambiguously distinguished between each other by the analysis of their housekeeping genes, e.g., rpoB, gyrB, or argF. The major fatty acids in both type strains were C12:0, C16:0, C16:1-c9, and C18:1-c11. Based on the genomic, phenotypic, and phylogenetic properties, the novel strain represents a novel species of the genus Neisseria, for which the name Neisseria montereyensis sp. nov. with the type strain CSL10203-ORH2T (= DSM 114706T = CCUG 76428T = NCTC 14721T) is proposed. The genome G + C content is 45.84% and the complete draft genome size is 2,310,535 bp.


Subject(s)
Sea Lions , Animals , Sheep/genetics , Sea Lions/genetics , Phylogeny , Bacterial Typing Techniques , Neisseria/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Fatty Acids , Genomics , Oropharynx , DNA , DNA, Bacterial/genetics , Nucleic Acid Hybridization , Phospholipids
6.
Hum Vaccin Immunother ; 12(9): 2441-6, 2016 09.
Article in English | MEDLINE | ID: mdl-27215541

ABSTRACT

BACKGROUND: Nasopharyngeal pneumococcal carriage rates among HIV-infected adults has not been described since conjugate pneumococcal vaccine-13 (PCV13) was added to the universal infant and childhood vaccination schedule in 2010. METHODS: HIV-infected adults presenting for routine health care visits to the Designated AIDS Center in Syracuse, NY between December 2013 and June 2015 were eligible for enrollment. Demographic, medical, and social history were recorded after obtaining informed consent. Nasopharyngeal samples were collected and cultured for the presence of Streptococcus pneumoniae using standard microbiologic techniques. Antibiotic susceptibility testing was performed using E-test→. RESULTS: 707 nasopharyngeal samples were collected from 414 HIV-infected adults. 18 samples were culture positive for S. pneumoniae; 1 (6%) isolate was of vaccine-type, 9 (50%) were non-vaccine types, and 8 (44%) were non-typeable. The 18 isolates were recovered from 15 different patients (4% of those enrolled). Three patients were culture positive for pneumococcus isolated from 2 consecutive samples, with non-typeable pneumococci identified consecutively from 2 patients and serotype 35B identified consecutively from 1 patient. The most commonly identified non-vaccine serotypes were 35B and 15B/C. Identified pneumococci were penicillin and cefotaxime susceptible. CONCLUSION: Four percent of HIV-infected adults in our study population were colonized with S. pneumoniae. The non-vaccine serotypes 35B and 15B/C predominated.


Subject(s)
Carrier State/epidemiology , HIV Infections/complications , Nasopharynx/microbiology , Pneumococcal Infections/epidemiology , Pneumococcal Vaccines/administration & dosage , Streptococcus pneumoniae/isolation & purification , Adolescent , Adult , Aged , Carrier State/microbiology , Female , Humans , Male , Microbial Sensitivity Tests , Middle Aged , New York/epidemiology , Pneumococcal Infections/microbiology , Pneumococcal Vaccines/immunology , Serogroup , Streptococcus pneumoniae/classification , Young Adult
7.
JAMA Pediatr ; 169(7): 646-52, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25938798

ABSTRACT

IMPORTANCE: Invasive pneumococcal disease (IPD) is a leading cause of pneumonia, meningitis, and bacteremia in children. In March 2010, a 13-valent pneumococcal conjugate vaccine (PCV13) was introduced to the routine childhood immunization schedule. The PCV13 contains 6 serotypes not included in the previously recommended 7-valent pneumococcal conjugate vaccine, including serotype 19A, the predominant cause of IPD prior to the introduction of PCV13. OBJECTIVES: To describe changes in the epidemiology and incidence of IPD in children younger than 5 years in New York City (NYC) after the introduction of PCV13 and assess PCV13 coverage in NYC. DESIGN, SETTING, AND PARTICIPANTS: Retrospective analysis of population-based IPD surveillance data of the general population residing in NYC between January 1, 2007, and December 31, 2012. Invasive pneumococcal disease cases were identified by laboratory reporting of positive pneumococcal cultures from a normally sterile body site in NYC residents younger than 5 years. Isolates were serotyped. Participants included 468 cases younger than 5 years with IPD reported through routine surveillance to the NYC Department of Health and Mental Hygiene. MAIN OUTCOMES AND MEASURES: Absolute differences and percentage changes in IPD incidence before and after the introduction of PCV13 by serotype grouping, age, and race/ethnicity. The number of PCV13 doses administered to children younger than 5 years was calculated using the NYC immunization information system. RESULTS: There were 468 IPD cases from 2007 to 2012. The incidence of IPD decreased by 69.6% (95% CI, -79.3% to -55.5%) from 21.0 cases per 100 000 (2007-2009 mean) pre-PCV13 to 6.4 cases per 100 000 (2011-2012 mean) post-PCV13. Estimates of disease caused by serotypes included in the PCV13 decreased by 82.5% (95% CI, -90.0% to -69.3%), including a 79.7% reduction in serotype 19A (95% CI, -89.0% to -62.4%). Reductions in IPD incidence were seen in all age groups, with the largest reduction in children younger than 12 months (80.4%; P = .005). Incidence decreased significantly in all racial/ethnic groups. The percentage of children younger than 5 years in NYC with 1 or more doses of PCV13 increased from 47.8% in 2010 to 89.8% in 2012. CONCLUSIONS AND RELEVANCE: The incidence of IPD in NYC children younger than 5 years and, particularly, the incidence of IPD caused by serotype 19A decreased dramatically following the introduction of PCV13, with reductions among all age and racial/ethnic groups. This represents a significant achievement for public health immunization programs and underscores the importance of achieving high immunization coverage.


Subject(s)
Pneumococcal Infections/epidemiology , Pneumococcal Vaccines/administration & dosage , Streptococcus pneumoniae/immunology , Vaccines, Conjugate/administration & dosage , Child , Child, Preschool , Female , Humans , Incidence , Infant , Male , New York City/epidemiology , Pneumococcal Infections/immunology , Pneumococcal Infections/prevention & control , Retrospective Studies
8.
Int J Syst Evol Microbiol ; 63(Pt 4): 1323-1328, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22798652

ABSTRACT

A polyphasic analysis was undertaken of seven independent isolates of gram-negative cocci collected from pathological clinical samples from New York, Louisiana, Florida and Illinois and healthy subgingival plaque from a patient in Virginia, USA. The 16S rRNA gene sequence similarity among these isolates was 99.7-100 %, and the closest species with a validly published name was Neisseria lactamica (96.9 % similarity to the type strain). DNA-DNA hybridization confirmed that these isolates are of the same species and are distinct from their nearest phylogenetic neighbour, N. lactamica. Phylogenetic analysis of 16S and 23S rRNA gene sequences indicated that the novel species belongs in the genus Neisseria. The predominant cellular fatty acids were C16 : 0, summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH) and C18 : 1ω7c. The cellular fatty acid profile, together with other phenotypic characters, further supports the inclusion of the novel species in the genus Neisseria. The name Neisseria oralis sp. nov. (type strain 6332(T)  = DSM 25276(T)  = LMG 26725(T)) is proposed.


Subject(s)
Dental Plaque/microbiology , Gingiva/microbiology , Neisseria/classification , Phylogeny , Bacterial Typing Techniques , DNA, Bacterial/genetics , Fatty Acids/analysis , Humans , Molecular Sequence Data , Neisseria/genetics , Neisseria/isolation & purification , Nucleic Acid Hybridization , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 23S/genetics , Sequence Analysis, DNA , United States
9.
Int J Syst Evol Microbiol ; 61(Pt 1): 91-98, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20173010

ABSTRACT

An analysis of 16S rRNA gene sequences from archived clinical reference specimens has identified two novel Neisseria species. For each species, two strains from independent sources were identified. Amongst species with validly published names, the closest species to the newly identified organisms were Neisseria canis, N. dentiae, N. zoodegmatis, N. animaloris and N. weaveri. DNA-DNA hybridization studies demonstrated that the newly identified isolates represent species that are distinct from these nearest neighbours. Analysis of partial 23S rRNA gene sequences for the newly identified strains and their nearest neighbours provided additional support for the species designation. Bayesian analysis of 16S rRNA gene sequences suggested that the newly identified isolates belong to distinct but related species of the genus Neisseria, and are members of a clade that includes N. dentiae, N. bacilliformis and N. canis. The predominant cellular fatty acids [16 : 0, summed feature 3 (16 : 1ω7c and/or iso-15 : 0 2-OH) and 18 : 1ω7c], as well as biochemical and morphological analyses further support the designation of Neisseria wadsworthii sp. nov. (type strain 9715(T) =DSM 22247(T) =CIP 109934(T)) and Neisseria shayeganii sp. nov. (type strain 871(T) =DSM 22246(T) =CIP 109933(T)).


Subject(s)
Neisseria/classification , Neisseria/isolation & purification , Neisseriaceae Infections/microbiology , Bacterial Typing Techniques , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Fatty Acids/analysis , Humans , Molecular Sequence Data , Neisseria/chemistry , Neisseria/genetics , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 23S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...