Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 11(1): 2668, 2020 05 29.
Article in English | MEDLINE | ID: mdl-32472057

ABSTRACT

Electrochemiluminescence (ECL) is a powerful transduction technique with a leading role in the biosensing field due to its high sensitivity and low background signal. Although the intrinsic analytical strength of ECL depends critically on the overall efficiency of the mechanisms of its generation, studies aimed at enhancing the ECL signal have mostly focused on the investigation of materials, either luminophores or coreactants, while fundamental mechanistic studies are relatively scarce. Here, we discover an unexpected but highly efficient mechanistic path for ECL generation close to the electrode surface (signal enhancement, 128%) using an innovative combination of ECL imaging techniques and electrochemical mapping of radical generation. Our findings, which are also supported by quantum chemical calculations and spin trapping methods, led to the identification of a family of alternative branched amine coreactants, which raises the analytical strength of ECL well beyond that of present state-of-the-art immunoassays, thus creating potential ECL applications in ultrasensitive bioanalysis.


Subject(s)
Biomarkers/analysis , Biosensing Techniques/methods , Electrochemical Techniques/methods , Electrochemistry/methods , Luminescent Measurements/methods , Chemistry Techniques, Analytical , Chemistry, Physical/methods , Luminescence
2.
Inorg Chem ; 59(11): 7435-7443, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32428400

ABSTRACT

A family of neutral bis-cyclometalated Ir(III) complexes based on phenanthridine (phent) derivates as cyclometalating ligands and picolinate as an ancillary ligand are described. The influence of extended conjugation, rigidity, and hydrophobicity as well as the electronic nature of the substituents were investigated in relation to the photoluminescence, PL, and electrochemiluminescence, ECL, properties. A significant increase of ECL in aqueous media is observed upon extension of the aromatic system or by substituting the phenyl with a dibenzofurane moiety, in compounds 2 and 3, respectively. Under real immunoassay conditions, these complexes achieve up to 4-fold higher ECL efficiency than the commercial ruthenium standard. These values, among the highest reported in the literature under these conditions, confirm the potential of iridium complexes as alternative labels in commercial instruments.

3.
Anal Chem ; 88(8): 4174-8, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-26978720

ABSTRACT

A family of neutral bis-cyclometalated iridium complexes [Ir(C^N)2(LX)] has been investigated as ECL labels under immunoassay conditions. Among them, the complex based on phenylphenanthridine (pphent) as the C^N ligand, exhibits outstanding performance and it is a candidate to substitute the commercially available Ru-based label in diagnostics.


Subject(s)
Electrochemical Techniques , Iridium/chemistry , Luminescence , Organometallic Compounds/chemistry , Photochemical Processes , Water/chemistry , Immunoassay , Solutions
4.
FASEB J ; 29(5): 1763-79, 2015 May.
Article in English | MEDLINE | ID: mdl-25670234

ABSTRACT

Humanized hapten-binding IgGs were designed with an accessible cysteine close to their binding pockets, for specific covalent payload attachment. Individual analyses of known structures of digoxigenin (Dig)- and fluorescein (Fluo) binding antibodies and a new structure of a biotin (Biot)-binder, revealed a "universal" coupling position (52(+2)) in proximity to binding pockets but without contributing to hapten interactions. Payloads that carry a free thiol are positioned on the antibody and covalently linked to it via disulfides. Covalent coupling is achieved and driven toward complete (95-100%) payload occupancy by spontaneous redox shuffling between antibody and payload. Attachment at the universal position works with different haptens, antibodies, and payloads. Examples are the haptens Fluo, Dig, and Biot combined with various fluorescent or peptidic payloads. Disulfide-bonded covalent antibody-payload complexes do not dissociate in vitro and in vivo. Coupling requires the designed cysteine and matching payload thiol because payload or antibody without the Cys/thiol are not linked (<5% nonspecific coupling). Hapten-mediated positioning is necessary as hapten-thiol-payload is only coupled to antibodies that bind matching haptens. Covalent complexes are more stable in vivo than noncovalent counterparts because digoxigeninylated or biotinylated fluorescent payloads without disulfide-linkage are cleared more rapidly in mice (approximately 50% reduced 48 hour serum levels) compared with their covalently linked counterparts. The coupling technology is applicable to many haptens and hapten binding antibodies (confirmed by automated analyses of the structures of 140 additional hapten binding antibodies) and can be applied to modulate the pharmacokinetics of small compounds or peptides. It is also suitable to link payloads in a reduction-releasable manner to tumor- or tissue-targeting delivery vehicles.


Subject(s)
Antibodies/immunology , Disulfides/immunology , Haptens/immunology , Peptide Fragments/immunology , Animals , Antibodies/chemistry , Antibodies/metabolism , Disulfides/chemistry , Disulfides/metabolism , Haptens/chemistry , Haptens/metabolism , Mice , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Binding , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/immunology , Sulfhydryl Compounds/metabolism
5.
J Control Release ; 171(1): 48-56, 2013 Oct 10.
Article in English | MEDLINE | ID: mdl-23800420

ABSTRACT

We applied noncovalent complexes of digoxigenin (Dig) binding antibodies with digoxigeninylated peptide derivatives to modulate their pharmacokinetic properties. A peptide derivative which activates the Y2R receptor was selectively mono-digoxigeninylated by reacting a NHS-Dig derivative with an ε-amino group of lysine 2. This position tolerates modifications without destroying receptor binding and functionality of the peptide. Dig-peptide derivatives can be loaded onto Dig-binding IgGs in a simple and robust reaction, thereby generating peptide-IgG complexes in a defined two to one molar ratio. This indicates that each antibody arm becomes occupied by one haptenylated peptide. In vitro receptor binding and signaling assays showed that Dig-peptides as well as the peptide-antibody complexes retain better potency than the corresponding pegylated peptides. In vivo analyses revealed prolonged serum half-life of antibody-complexed peptides compared to unmodified peptides. Thus, complexes are of sufficient stability for PK modulation. We observed more prolonged weight reduction in a murine diet-induced obesity (DIO) model with antibody-complexed peptides compared to unmodified peptides. We conclude that antibody-hapten complexation can be applied to modulate the PK of haptenylated peptides and in consequence improve the therapeutic efficacy of therapeutic peptides.


Subject(s)
Digoxigenin/chemistry , Haptens/chemistry , Immunoglobulin G/chemistry , Peptides/chemistry , Animals , Diet, High-Fat , Digoxigenin/blood , Digoxigenin/pharmacokinetics , Eating/drug effects , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Obesity/drug therapy , Peptides/pharmacokinetics , Purinergic P2Y Receptor Agonists/administration & dosage , Receptors, Purinergic P2Y/metabolism
6.
Small ; 7(22): 3193-201, 2011 Nov 18.
Article in English | MEDLINE | ID: mdl-21956796

ABSTRACT

Zeolite L nanocrystals, as inorganic host material containing hydrophobic fluorophore N,N'-bis(2,6-dimethylphenyl)perylene-3,4,9,10-tetracarboxylic diimide in the unidirectional channels, are developed as new labels for biosensor systems. The external surface of the particles is modified with carboxylic acid groups for conjugation to primary amines of biomolecules such as antibodies. Anti-digoxigenin (anti-DIG) is selected to be immobilized on zeolite L via N-hydroxysulfosuccinimide ester linker. Together with DIG, it serves as a good universal binding pair for diverse analyte detection owing to the high binding affinity and low background noise. The conjugates are characterized by the dynamic light scattering technique for their hydrodynamic diameters and by enzyme-linked immunosorbent assay for antigen-antibody binding behavior. The characterizations prove that anti-DIG antibodies are successfully immobilized on zeolite L with their binding activities maintained. The microarray fluorescent sandwich immunoassay based on such nanocrystalline labels shows high sensitivity in a thyroid-stimulating hormone assay with the lower detection limit down to the femtomolar range. These new fluorescent labels possess great potential for in vitro diagnostics applications.


Subject(s)
Digoxigenin/metabolism , Nanoparticles/chemistry , Protein Array Analysis/methods , Staining and Labeling , Zeolites/metabolism , Enzyme-Linked Immunosorbent Assay , Ethyldimethylaminopropyl Carbodiimide/chemistry , Fluorescence , Immunoassay , Nanoparticles/ultrastructure , Thyrotropin/analysis
7.
Proc Natl Acad Sci U S A ; 108(20): 8194-9, 2011 May 17.
Article in English | MEDLINE | ID: mdl-21536919

ABSTRACT

Bispecific antibodies that bind cell-surface targets as well as digoxigenin (Dig) were generated for targeted payload delivery. Targeting moieties are IgGs that bind the tumor antigens Her2, IGF1R, CD22, or LeY. A Dig-binding single-chain Fv was attached in disulfide-stabilized form to C termini of CH3 domains of targeting antibodies. Bispecific molecules were expressed in mammalian cells and purified in the same manner as unmodified IgGs. They are stable without aggregation propensity and retain binding specificity/affinity to cell-surface antigens and Dig. Digoxigeninylated payloads were generated that retain full functionality and can be complexed to bispecific antibodies in a defined 21 ratio. Payloads include small compounds (Dig-Cy5, Dig-Doxorubicin) and proteins (Dig-GFP). Complexed payloads are targeted by the bispecifics to cancer cells and because these complexes are stable in serum, they can be applied for targeted delivery. Because Dig bispecifics also effectively capture digoxigeninylated compounds under physiological conditions, separate administration of uncharged Dig bispecifics followed by application of Dig payload is sufficient to achieve antibody-mediated targeting in vitro and in vivo.


Subject(s)
Antibodies, Bispecific/therapeutic use , Antineoplastic Agents/administration & dosage , Digoxigenin/immunology , Drug Delivery Systems/methods , Antibodies, Bispecific/immunology , Antigens, Neoplasm/immunology , Carbocyanines/administration & dosage , Cell Line, Tumor , Doxorubicin/administration & dosage , Green Fluorescent Proteins/administration & dosage , Humans , Methods , Single-Chain Antibodies
8.
Anal Chim Acta ; 646(1-2): 119-22, 2009 Jul 30.
Article in English | MEDLINE | ID: mdl-19523564

ABSTRACT

We report on a competitive, homogeneous immunoassay for the detection of the hapten digoxigenin. The assay is based on competitive fluorescence quenching by gold nanoparticles. Digoxigenin is indirectly labeled with the fluorophore Cy3B through bovine serum albumin and used as a marker. Gold nanoparticles functionalized with anti-digoxigenin antibodies serve as fluorescence quenchers. Free digoxigenin molecules in the analyte solution compete with the labeled markers for antibodies on the gold nanoparticles. The fluorescence signal depends linearly on the free digoxigenin concentration within a range of concentration from 0.5 to 3 ng mL(-1). The limit of detection is estimated as 0.2 ng mL(-1) and the limit of quantitation is estimated as 0.6 ng mL(-1). The method can be used to detect digoxin, a drug used to cure cardiac arrhythmia.


Subject(s)
Digoxigenin/analysis , Fluorescent Dyes/chemistry , Gold/chemistry , Immunoassay/methods , Metal Nanoparticles/chemistry , Animals , Antibodies/chemistry , Antibodies/immunology , Cattle , Digoxigenin/immunology , Digoxin/analysis , Digoxin/immunology , Serum Albumin, Bovine/chemistry , Serum Albumin, Bovine/immunology , Spectrophotometry, Ultraviolet
9.
Inorg Chem ; 42(24): 7789-98, 2003 Dec 01.
Article in English | MEDLINE | ID: mdl-14632494

ABSTRACT

Two homometallic complexes containing two and three ruthenium polypyridyl units linked by amino acid lysine (Lys) and the related dipeptide (LysLys) were synthesized and their electrochemical, spectroscopic, and electrochemiluminescence (ECL) properties were investigated. The electrochemical and photophysical data indicate that the two metal complexes largely retain the electronic properties of the reference compound for the separate ruthenium moieties in the two bridged complexes, [4-carboxypropyl-4'-methyl-2,2'-bipyridine]bis(2,2'-bipyridine)ruthenium(II) complex. The ECL studies, performed in aqueous media in the presence of tri-n-propylamine as co-reactant, show that the ECL intensity increases by 30% for the dinuclear and trinuclear complexes compared to the reference. Heterogeneous ECL immunoassay studies, performed on larger dendritic complexes containing up to eight ruthenium units, demonstrate that limitations due to the slow diffusion can easily be overcome by means of nanoparticle technology. In this case, the ECL signal is proportional to the number of ruthenium units. Multimetallic systems with several ruthenium centers may, however, undergo nonspecific bonding to streptavidin-coated particles or to antibodies, thereby increasing the background ECL intensity and lowering the sensitivity of the immunoassay.


Subject(s)
Electrochemistry , Luminescent Measurements , Organometallic Compounds/chemical synthesis , Ruthenium/chemistry , Molecular Structure , Organometallic Compounds/chemistry , Staining and Labeling
SELECTION OF CITATIONS
SEARCH DETAIL