Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Appl Biochem Biotechnol ; 193(1): 238-256, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32894388

ABSTRACT

α-Galactosidases hold immense potential due to their biotechnological applications in various industrial and functional food sectors. In the present study, soluble and covalently cross-linked aggregated forms of a low molecular weight, thermo-labile α-galactosidase from Vigna mungo (VM-αGal) seeds were immobilized onto chitosan-coated magnetic nanoparticles for improved stability and repeated usage by magnetic separation. Parameters like precipitants (type, amount, and ratio), glutaraldehyde concentration, and enzyme load were optimized for the preparation of chitosan-coated magnetic nanocomposites of cross-linked VM-αGal (VM-αGal-MC) and VM-αGal (VM-αGal-M) resulted in 100% immobilization efficiency. Size and morphology of VM-αGal-M were studied through dynamic light scattering (DLS) and scanning electron microscopy (SEM), while Fourier transform infrared spectroscopy (FTIR) was used to study the chemical composition of VM-αGal-MC and VM-αGal-M. VM-αGal-MC and VM-αGal-M were found more active in a broad range of pH (3-8) and displayed optimal temperatures up to 25 °C higher than VM-αGal. Addition of non-ionic detergents (except Tween-40) improved VM-αGal-MC activity by up to 44% but negatively affected VM-αGal-M activity. Both VM-αGal-MC (15% residual activity after 21 min at 85 °C, Ed 92.42 kcal/mol) and VM-αGal-M (69.0% residual activity after 10 min at 75 °C, Ed 39.87 kcal/mol) showed remarkable thermal stability and repeatedly hydrolyzed the substrate for 10 cycles.


Subject(s)
Enzymes, Immobilized/chemistry , Magnetic Fields , Nanocomposites/chemistry , Plant Proteins/chemistry , Vigna/enzymology , alpha-Galactosidase/chemistry , Enzyme Stability , Hot Temperature , Solubility
2.
Int J Biol Macromol ; 119: 770-778, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29935239

ABSTRACT

A hitherto unknown low molecular weight form of α-galactosidase (VM-αGal-P) from germinating black gram (Vigna mungo) seeds was purified (324 U/mg specific activity, 1157-fold purification, ~45 kDa) using ion-exchange (DEAE-cellulose, CM-sepharose), gel filtration (Sephadex G-75) and affinity (Con-A Sepharose 4B) chromatography but with poor yield (0.75%). Partially purified enzyme (VM-αGal) (146.3 U/mg specific activity, 522.5-fold purification) was used for further studies. VM-αGal showed optimal activity at pH 5 and 55 °C. Hg2+ and SDS completely inhibited VM-αGal activity. The Km, Vmax and catalytic efficiency (kcat/Km) of VM-αGal for pNPG and raffinose was 0.99, 17.23 mM, 1.66, 0.146 µmol ml-1 min-1, and 0.413, 0.0026 s-1 mM-1, respectively. VM-αGal was competitively inhibited by galactose (Ki 7.70 mM). Thermodynamic parameters [activation enthalpy (ΔH), activation entropy (ΔS) and free energy (ΔG)] of VM-αGal at 45-51 °C showed that VM-αGal was in a less energetic state and had susceptibility towards denaturation. Temperature-induced structural unfolding studies of VM-αGal probed by fluorescence, and far-UV CD spectroscopy revealed significant loss in tertiary structure and a steep decline in ß-sheet content at 45-65 °C, and above 55 °C, respectively. VM-αGal improved the nutritional quality of soymilk by hydrolyzing raffinose family oligosaccharides (26.5% and 18.45% decrease in stachyose and raffinose, respectively).


Subject(s)
Molecular Weight , Vigna/enzymology , alpha-Galactosidase/chemistry , Enzyme Stability , Hydrogen-Ion Concentration , Hydrolysis , Kinetics , Protein Unfolding , Substrate Specificity , Temperature , alpha-Galactosidase/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL