Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Med Mycol ; 61(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38059847

ABSTRACT

Epizootic equine lymphangitis (EEL) is a chronic fungal disease that affects equids. The causative agent is a dimorphic fungus called Histoplasma capsulatum var farciminosum. Histoplasmacapsulatum var farciminosum field strain 7 (D 2878/2023) isolated from the eye socket of an EEL Ethiopian horse was sub-cultured on four different solid media and incubated at 26°C and 37°C for 6 weeks. Details of growth morphology were recorded and shown in images during 6 weeks of incubation. Histoplasmacapsulatum var farciminosum grew best at 26°C on all four agars, but only on sheep blood agar at 37°C as small, white dry colonies.


Histoplasma capsulatum var farciminosum was isolated from the eye socket of an equine epizootic lymphangitis infected Ethiopian horse on Mycosel agar, which was sub-cultured on four different solid media at two different temperatures for 6 weeks to show its growth pattern.


Subject(s)
Histoplasmosis , Horse Diseases , Lymphangitis , Sheep Diseases , Sheep , Animals , Horses , Histoplasma , Agar , Histoplasmosis/veterinary , Histoplasmosis/microbiology , Culture Media , Lymphangitis/microbiology , Lymphangitis/veterinary , Horse Diseases/diagnosis , Horse Diseases/microbiology
2.
Vet Med Sci ; 9(4): 1890-1900, 2023 07.
Article in English | MEDLINE | ID: mdl-37226651

ABSTRACT

BACKGROUND: Avian influenza viruses (AIV) may cause enormous economic losses in the poultry industry and sporadically severe disease in humans. Falconry is a tradition of great importance in the Arabian Peninsula. Falcons may catch AIV through contact with infected quarry species. OBJECTIVES: Falcons together with other bird species are the focus of this seroprevalence study, carried out on sera collected in the United Arab Emirates (UAE). AIV with the haemagglutinin subtypes H5, H7 and possibly H9 may infect humans. METHODS: We investigated the antibody prevalence to these subtypes in falcons and other birds by haemagglutination inhibition test. 617 sera of falcons and 429 sera of 46 wild/captive bird species were tested. RESULTS: From the falcons, only one was positive for H5 antibodies (0.2%), none contained antibodies to H7, but 78 had antibodies to H9 (13.2%). Regarding other birds, eight were positive for antibodies to H5 (2.1%), none had antibodies to H7, but 55 sera from 17 species contained antibodies to H9 (14.4%). CONCLUSIONS: In contrast to H5 and H7 infections, H9N2 is widespread worldwide. Its ability to reassort, thereby creating possibly pathogenic strains for humans, should remind us of the potential risk that close contact with birds entails.


Subject(s)
Influenza A Virus, H9N2 Subtype , Influenza in Birds , Animals , Animals, Wild , Birds , Influenza in Birds/epidemiology , Prevalence , Seroepidemiologic Studies , United Arab Emirates/epidemiology
3.
Emerg Infect Dis ; 29(6): 1236-1239, 2023 06.
Article in English | MEDLINE | ID: mdl-37209676

ABSTRACT

We developed an ELISPOT assay for evaluating Middle East respiratory syndrome coronavirus (MERS-CoV)‒specific T-cell responses in dromedary camels. After single modified vaccinia virus Ankara-MERS-S vaccination, seropositive camels showed increased levels of MERS-CoV‒specific T cells and antibodies, indicating suitability of camel vaccinations in disease-endemic areas as a promising approach to control infection.


Subject(s)
Camelus , Coronavirus Infections , T-Lymphocytes , Viral Vaccines , Animals , Camelus/immunology , T-Lymphocytes/immunology , Middle East Respiratory Syndrome Coronavirus , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Viral Vaccines/immunology , Vaccination/veterinary , Enzyme-Linked Immunospot Assay , Antibodies, Viral
4.
Appl Microbiol Biotechnol ; 107(10): 3329-3339, 2023 May.
Article in English | MEDLINE | ID: mdl-37060465

ABSTRACT

Pandemics like SARS-Cov-2 very frequently have their origin in different animals and in particular herds of camels could be a source of zoonotic diseases. This study took advantage on a highly sensitive and adaptable method for the fast and reliable detection of viral antibodies in camels using low-cost equipment. Magnetic nanoparticles (MNP) have high variability in their functionalization with different peptides and proteins. We confirm that 3-aminopropyl triethoxysilane (APTES)-coated MNP could be functionalized with viral proteins. The protein loading could be confirmed by simple loading controls using FACS-analysis (p < 0.05). Complementary combination of antigen and antibody yields in a significant signal increase could be proven by both FACS and COMPASS. However, COMPASS needs only a few seconds for the measurement. In COMPASS, the phase φn on selected critical point of the fifth higher harmonic (n = 5th). Here, positive sera display highly significant signal increase over the control or negative sera. Furthermore, a clear distinction could be made in antibody detection as an immune response to closely related viruses (SARS-CoV2 and MERS). Using modified MNPs along with COMPASS offers a fast and reliable method that is less cost intensive than current technologies and offers the possibility to be quickly adapted in case of new occurring viral infections. KEY POINTS: • COMPASS (critical offset magnetic particle spectroscopy) allows the fast detection of antibodies. • Magnetic nanoparticles can be adapted by exchange of the linked bait molecule. • Antibodies could be detected in camel sera without washing steps within seconds.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Animals , Antibodies, Viral , Camelus , RNA, Viral , Middle East Respiratory Syndrome Coronavirus/genetics , SARS-CoV-2 , Spectrum Analysis , Magnetic Phenomena
5.
J Equine Vet Sci ; 119: 104137, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36223818

ABSTRACT

African horse sickness (AHS) is a viral disease of equids, caused by a virus of the genus Orbivirus, family Reoviridae. The African horse sickness virus (AHSV) genome is made up of ten double-stranded RNA (dsRNA) segments that together code for seven structural and four nonstructural proteins. AHS is endemic in sub-Saharan countries. The efficacy and safety of inactivated AHS vaccines containing all nine serotypes, produced at the Central Veterinary Research Laboratory (CVRL) in Dubai, United Arab Emirates have been proven in the past. All nine AHSV serotypes were isolated from 102 samples collected in the last 20 years from horse fatalities in seven different area of Kenya, Africa. CVRL inactivated AHS vaccines are used in a few African countries defining the importance of this present study to compare the genome sequences of the nine AHSV serotypes isolated from horse fatalities in Kenya and nine AHSV serotypes isolated in South Africa. The hypothesized serotypes of the newly sequenced AHSV field strains from Kenya were likewise confirmed in this investigation, and they show substantial sequence homologies with recently isolated AHSV field strains.


Subject(s)
African Horse Sickness Virus , African Horse Sickness , Horse Diseases , Orbivirus , Animals , Horses , African Horse Sickness/epidemiology , African Horse Sickness Virus/genetics , Orbivirus/genetics , Serogroup , South Africa/epidemiology , Horse Diseases/epidemiology
6.
Pathogens ; 11(9)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36145423

ABSTRACT

Peste des Petits Ruminants (PPR) is a transboundary contagious disease in domestic small ruminants. Infections with the small ruminant morbillivirus (SRMV) were regularly found in wildlife, with unknown roles in PPR epidemiology. In order to access infection dynamics and virulence, we infected German Edelziege goats intranasally with a SRMV isolate that originated from Barbary sheep from an outbreak in the United Arab Emirates. Six goats were infected with cell culture-isolated SRMV, and two goats were kept in contact. Goats were daily monitored, and clinical score was recorded. EDTA blood, nasal, conjunctival and rectal swab samples were collected for the detection of SRMV genome load and serum for serological analysis. Short incubation period in infected (4 to 5 dpi) as well as in contact goats (9 dpi) was followed by typical clinical signs related to PPR. The highest viral load was detectable in conjunctival and nasal swab samples with RT-qPCR and rapid pen-side test. Specific antibodies were detected at 7 dpi in infected and 14 dpi in contact goats. In general, high virulence and easy transmission of the virus originated from wildlife in domestic goats was observed. The virus isolate belongs to Asian lineage IV, genetically related to Chinese and Mongolian strains.

7.
Front Microbiol ; 12: 739779, 2021.
Article in English | MEDLINE | ID: mdl-34956112

ABSTRACT

Since the emergence of Middle East Respiratory Syndrome (MERS) in 2012, there have been a surge in the discovery and evolutionary studies of viruses in dromedaries. Here, we investigated a herd of nine dromedary calves from Umm Al Quwain, the United Arab Emirates that developed respiratory signs. Viral culture of the nasal swabs from the nine calves on Vero cells showed two different types of cytopathic effects (CPEs), suggesting the presence of two different viruses. Three samples showed typical CPEs of Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) in Vero cells, which was confirmed by partial RdRp gene sequencing. Complete genome sequencing of the three MERS-CoV strains showed that they belonged to clade B3, most closely related to another dromedary MERS-CoV isolate previously detected in Dubai. They also showed evidence of recombination between lineages B4 and B5 in ORF1ab. Another three samples showed non-typical CPEs of MERS-CoV with cell rounding, progressive degeneration, and detachment. Electron microscopy revealed spherical viral particles with peplomers and diameter of about 170nm. High-throughput sequencing and metagenomic analysis showed that the genome organization (3'-N-P-M-F-HN-L-5') was typical of paramyxovirus. They possessed typical genome features similar to other viruses of the genus Respirovirus, including a conserved motif 323FAPGNYALSYAM336 in the N protein, RNA editing sites 5'-717AAAAAAGGG725-3', and 5'-1038AGAAGAAAGAAAGG1051-3' (mRNA sense) in the P gene with multiple polypeptides coding capacity, a nuclear localization signal sequence 245KVGRMYSVEYCKQKIEK261 in the M protein, a conserved sialic acid binding motif 252NRKSCS257 in the HN protein, conserved lengths of the leader (55nt) and trailer (51nt) sequences, total coding percentages (92.6-93.4%), gene-start (AGGANNAAAG), gene-end (NANNANNAAAAA), and trinucleotide intergenic sequences (CTT, mRNA sense). Phylogenetic analysis of their complete genomes showed that they were most closely related to bovine parainfluenza virus 3 (PIV3) genotype C strains. In the phylogenetic tree constructed using the complete L protein, the branch length between dromedary camel PIV3 (DcPIV3) and the nearest node is 0.04, which is >0.03, the definition used for species demarcation in the family Paramyxoviridae. Therefore, we show that DcPIV3 is a novel species of the genus Respirovirus that co-circulated with MERS-CoV in a dromedary herd in the Middle East.

8.
Viruses ; 13(10)2021 09 28.
Article in English | MEDLINE | ID: mdl-34696370

ABSTRACT

Camelpox virus (CMLV) is the causative agent of camelpox, which frequently occurs in the Old World camelids-rearing countries except for Australia. It has also been described in experimentally inoculated New World camelids. Camelpox outbreaks are often experienced shortly after the rainy season, which occurs twice a year on the Arabian Peninsula because of the increased density of the insect population, particularly mosquitos. A systemic form of camelpox outbreak in seven dromedary camels was diagnosed by histology, virus isolation, and PCR. A phylogenetic analysis using full length CMLV genomes of the isolated CMLV strains showed a single phylogenetic unit without any distinctive differences between them. The United Arab Emirates (UAE) isolate sequences showed phylogenetical relatedness with CMLV isolates from Israel with only minor sequence differences. Although the sequences of viruses from both countries were closely related, the disease manifestation was vastly different. Our study shows that the virulence is not only determined by genetic features of CMLV alone but may also depend on other factors such as unknown aspects of the host (e.g., age, overall fitness), management, and the environment.


Subject(s)
Camelus/virology , Disease Outbreaks/statistics & numerical data , Disease Outbreaks/veterinary , Orthopoxvirus/genetics , Poxviridae Infections/epidemiology , Poxviridae Infections/veterinary , Animals , Female , High-Throughput Nucleotide Sequencing , Male , Orthopoxvirus/classification , Phylogeny , Poxviridae Infections/mortality , Sequence Analysis, DNA , United Arab Emirates
9.
Viruses ; 13(3)2021 03 08.
Article in English | MEDLINE | ID: mdl-33800270

ABSTRACT

Picobirnaviruses (PBVs) are small non-enveloped bisegmented double-stranded RNA viruses found in humans, mammals, and birds. Increasing molecular epidemiology studies suggest a high sequence diversity of PBVs in numerous hosts and the environment. In this study, using 229 fecal samples from dromedary camels in Dubai, 52.8% were positive for PBVs, of which 77.7% and 41.3% were positive for genogroup I and II, respectively, and 19.0% were positive for both genotypes. Phylogenetic analysis showed high diversity among the sequences of genogroup I and II dromedary PBVs. Marked nucleotide polymorphisms were observed in 75.5% and 46.0% of genogroup I and II RNA-dependent RNA polymerase (RdRp) sequences, respectively, suggesting the co-existence of multiple strains in the same specimen. Both high genetic diversity and prevalence of genogroup I and II PBV in dromedaries were observed. In fact, the prevalence of genogroup II PBV in dromedaries is the highest among all animals to date. The complete/near-complete core genomes of five genogroup I and one genogroup II dromedary PBVs and partial segment 1 and 2 of both genotypes were also sequenced. The dromedary PBV genome organizations were similar to those of other animals. Genetic reassortment and mutation are both important in the ecology and evolution of PBVs.


Subject(s)
Camelus/virology , Genetic Variation , Genotype , Picobirnavirus/classification , Picobirnavirus/genetics , RNA Virus Infections/epidemiology , RNA Virus Infections/veterinary , Animals , Evolution, Molecular , Feces , Genome, Viral , Phylogeny , Picobirnavirus/isolation & purification , Prevalence , RNA, Viral/genetics , United Arab Emirates/epidemiology
10.
Equine Vet J ; 53(4): 826-833, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33011979

ABSTRACT

BACKGROUND: African horse sickness (AHS) is a devastating viral disease of equids that was first recorded in 1327. Currently, prevention and control of the disease are based on attenuated vaccines and midge control. It has been shown that attenuated Orbivirus vaccines are not always safe as they may reverse to virulence. OBJECTIVES: In the Emirate of Dubai, a vaccination experiment was carried out with an inactivated AHS vaccine produced at the Central Veterinary Research Laboratory (CVRL), Dubai, UAE to investigate the humoral antibody response of AHS-naïve horses to this vaccine. Our vaccination experiment was performed to establish an AHS vaccine bank in the UAE to protect horses from the disease in case of an outbreak. Therefore, CVRL established an inactivated AHS vaccine containing all nine serotypes which induce high neutralising antibodies. STUDY DESIGN: A total of 10 horses kept in a desert isolation area were subcutaneously and intramuscularly vaccinated with an inactivated vaccine containing all nine AHS serotypes previously isolated from Kenyan horse fatalities. Primary immunisation was followed by two booster immunisations 4 weeks and 6 months apart. After 13 months, an annual booster was administered. METHODS: Blood samples were regularly withdrawn for ELISA and virus neutralisation testing. Additionally, EDTA blood was tested every second day for 14 days post each vaccination for the presence of AHS virus or its RNA. RESULTS: Results show that ELISA and virus neutralising antibodies appeared after the first booster, declined after 4-6 months and therefore three vaccinations and an annual vaccination are necessary to achieve high protective virus neutralising antibodies. MAIN LIMITATIONS: No challenge infection was carried out due to the lack of a safe facility in the UAE. CONCLUSION: Before more advanced AHS vaccines become a reality, inactivated vaccines containing all nine serotypes should be used as they produce high ELISA and neutralising antibodies.


Subject(s)
African Horse Sickness Virus , African Horse Sickness , Horse Diseases , Viral Vaccines , African Horse Sickness/prevention & control , Animals , Antibodies, Neutralizing , Antibodies, Viral , Antibody Formation , Horse Diseases/prevention & control , Horses , Kenya , Serogroup , Vaccination/veterinary , Vaccines, Inactivated
11.
BMC Vet Res ; 16(1): 322, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32873300

ABSTRACT

BACKGROUND: African horse sickness (AHS) is a serious viral disease of equids resulting in the deaths of many equids in sub-Saharan Africa that has been recognized for centuries. This has significant economic impact on the horse industry, despite the good husbandry practices. Currently, prevention and control of the disease is based on administration of live attenuated vaccines and control of the arthropod vectors. RESULTS: A total of 29 horses in 2 groups, were vaccinated. Eighteen horses in Group 1 were further divided into 9 subgroups of 2 horses each, were individually immunised with one of 1 to 9 AHS serotypes, respectively. The eleven horses of Group 2 were immunised with all 9 serotypes simultaneously with 2 different vaccinations containing 5 serotypes (1, 4, 7-9) and 4 serotypes (2, 3, 5, 6) respectively. The duration of this study was 12 months. Blood samples were periodically withdrawn for serum antibody tests using ELISA and VNT and for 2 weeks after each vaccination for PCR and virus isolation. After the booster vaccination, these 27 horses seroconverted, however 2 horses responded poorly as measured by ELISA. In Group 1 ELISA and VN antibodies declined between 5 to 7 months post vaccination (pv). Twelve months later, the antibody levels in most of the horses decreased to the seronegative range until the annual booster where all horses again seroconverted strongly. In Group 2, ELISA antibodies were positive after the first booster and VN antibodies started to appear for some serotypes after primary vaccination. After booster vaccination, VN antibodies increased in a different pattern for each serotype. Antibodies remained high for 12 months and increased strongly after the annual booster in 78% of the horses. PCR and virus isolation results remained negative. CONCLUSIONS: Horses vaccinated with single serotypes need a booster after 6 months and simultaneously immunised horses after 12 months. Due to the non-availability of a facility in the UAE, no challenge infection could be carried out.


Subject(s)
African Horse Sickness Virus/immunology , African Horse Sickness/prevention & control , Viral Vaccines/immunology , African Horse Sickness/blood , Animals , Antibodies, Neutralizing , Antibodies, Viral/blood , Enzyme-Linked Immunosorbent Assay/veterinary , Horses , Immunization Schedule , Serogroup , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/immunology , Viral Vaccines/administration & dosage
12.
Transbound Emerg Dis ; 67(6): 2881-2891, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32502324

ABSTRACT

Peste des petits ruminants (PPR) is a fatal disease of small ruminants which has spread rapidly to previously PPR-free countries in recent decades, causing enormous economic losses in the affected regions. Here, two newly emerged PPR virus (PPRV) isolates from India and from the Middle East were tested in an animal trial to analyse their pathogenesis, and to evaluate serological and molecular detection methods. Animals infected with the two different PPRV isolates showed marked differences in clinical manifestation and scoring. The PPRV isolate from India was less virulent than the virus from the Middle East. Commercially available rapid detection methods for PPRV antigen (two Lateral Flow Devices (LFDs) and one antigen ELISA) were evaluated in comparison with a nucleic acid detection method. For this purpose, ocular and nasal swabs were used. Due to the easy non-invasive sampling, faecal samples were also analysed. For all rapid antigen detection methods, a high specificity of 100% was observed independent of the sample matrix and dilution buffers used. Both antigen ELISA and LFD tests showed highest sensitivities for nasal swabs. Here, the detection rate of the antigen ELISA, the LFD-PESTE-TEST and the LFD-ID Rapid-Test was 78%, 75% and 78%, respectively. Ocular swabs were less suitable for antigen detection of PPRV. These results reflect the increased viral load in nasal swabs of PPRV infected goats compared to ocular swabs. The faecal samples were the least suitable for antigen detection. In conclusion, nasal swab samples are the first choice for the antigen and genome detection of PPRV. Nevertheless, based on the excellent diagnostic specificity of the rapid tests, positive results generated with other sample matrices are solid. In contrast, negative test results can be caused on the reduced analytical sensitivity of the rapid antigen tests and must be treated with caution.


Subject(s)
Antigens, Viral/immunology , Goat Diseases/diagnosis , Peste-des-Petits-Ruminants/diagnosis , Peste-des-petits-ruminants virus/immunology , Animals , Enzyme-Linked Immunosorbent Assay/veterinary , Feces/virology , Goat Diseases/immunology , Goat Diseases/virology , Goats , India , Male , Nasal Mucosa/virology , Peste-des-Petits-Ruminants/immunology , Peste-des-Petits-Ruminants/virology , Peste-des-petits-ruminants virus/isolation & purification , Precipitin Tests/veterinary
13.
J Equine Vet Sci ; 88: 102967, 2020 05.
Article in English | MEDLINE | ID: mdl-32303305

ABSTRACT

Our investigation has shown that multiple vaccinations with inactivated African horse sickness (AHS) vaccines containing all 9 serotypes and produced at the Central Veterinary Research Laboratory in Dubai, UAE, protect horses from AHS. However, the immunization did not prevent African horse sickness fever (AHSF) in approximately 10% of the vaccinated horses despite high enzyme-linked immunosorbent assay and virus neutralizing antibodies. African horse sickness fever is a very mild form of AHS with similar clinical signs. From all 6 horses which had developed AHSF, no virus was isolated from EDTA blood withdrawn during the acute phase of infection. Despite high neutralizing antibodies, serotype 9 was detected by polymerase chain reaction in 4 of them. All 6 horses recovered within 72 hours, after they developed mild clinical signs of AHS.


Subject(s)
African Horse Sickness Virus , African Horse Sickness , Horse Diseases , Viral Vaccines , African Horse Sickness/prevention & control , Animals , Antibodies, Neutralizing , Antibodies, Viral , Horses
14.
Viruses ; 11(12)2019 12 08.
Article in English | MEDLINE | ID: mdl-31817946

ABSTRACT

Peste-des-petits-ruminants virus (PPRV) causes a severe respiratory disease in small ruminants. The possible impact of different atypical host species in the spread and planed worldwide eradication of PPRV remains to be clarified. Recent transmission trials with the virulent PPRV lineage IV (LIV)-strain Kurdistan/2011 revealed that pigs and wild boar are possible sources of PPRV-infection. We therefore investigated the role of cattle, llamas, alpacas, and dromedary camels in transmission trials using the Kurdistan/2011 strain for intranasal infection and integrated a literature review for a proper evaluation of their host traits and role in PPRV-transmission. Cattle and camelids developed no clinical signs, no viremia, shed no or only low PPRV-RNA loads in swab samples and did not transmit any PPRV to the contact animals. The distribution of PPRV-RNA or antigen in lymphoid organs was similar in cattle and camelids although generally lower compared to suids and small ruminants. In the typical small ruminant hosts, the tissue tropism, pathogenesis and disease expression after PPRV-infection is associated with infection of immune and epithelial cells via SLAM and nectin-4 receptors, respectively. We therefore suggest a different pathogenesis in cattle and camelids and both as dead-end hosts for PPRV.


Subject(s)
Camelus/virology , Host Specificity , Host-Pathogen Interactions , Peste-des-Petits-Ruminants/virology , Peste-des-petits-ruminants virus/physiology , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , Biomarkers , Biopsy , Cattle , Female , Hematologic Tests , Immunohistochemistry , Male , Peste-des-Petits-Ruminants/blood , Peste-des-Petits-Ruminants/pathology
15.
Vet Ital ; 55(3): 261-267, 2019 Sep 30.
Article in English | MEDLINE | ID: mdl-31599551

ABSTRACT

Six horses were challenged experimentally with a strain of Burkholderia pseudomallei isolated from a fatal case of the infection in a dromedary camel years earlier in the Emirate of Dubai. Three horses were inoculated subcutaneously and in 3 the bacterium was administered by the oral route. Four of the horses became serologically positive based on reactions to one or more of the OIE described tests for glanders. B. pseudomallei was re-isolated from the 4 serological positive horses. Only one of the subcutaneously infected horses, developed fever for 3 days. The white blood cell values and the neutrophil counts were also elevated. The study confirmed that existing serological test for diagnosing glanders cannot differentiate between glanders and melioidosis in horses.


Subject(s)
Burkholderia pseudomallei/physiology , Diagnostic Tests, Routine/veterinary , Horse Diseases/diagnosis , Melioidosis/veterinary , Animals , Antibodies, Bacterial/blood , Diagnostic Tests, Routine/instrumentation , Female , Glanders/diagnosis , Horse Diseases/microbiology , Horses , Male , Melioidosis/diagnosis , Melioidosis/microbiology , United Arab Emirates
16.
Viruses ; 11(9)2019 09 01.
Article in English | MEDLINE | ID: mdl-31480604

ABSTRACT

Newcastle disease virus (NDV) causes morbidities and mortalities in wild and domestic birds globally. For humans, exposure to infected birds can cause conjunctivitis and influenza-like symptoms. NDV infections in mammals are rarely reported. In this study, using next-generation sequencing, an NDV was identified and isolated from Vero cells inoculated with the nasal swab of an aborted dromedary fetus in Dubai, during the time when an NDV outbreak occurred in a pigeon farm located in close proximity to the dairy camel farm where the mother of the aborted dromedary fetus resided, and there were a lot of pigeons in the camel farm. Genome analysis revealed that the structurally and functionally important features of other NDVs were also present in this dromedary NDV genome. Phylogenetic analysis based on the nucleotide sequences of fusion protein (F), hemagglutinin-neuraminidase protein (HN) and complete polyprotein showed that the virus belonged to sub-genotype VIg of class II NDV and is most closely related to pigeon NDVs in Egypt in the same year. The present study is the first that demonstrated isolation of NDV in dromedaries. Further study is warranted to investigate the relationship between NDV infection and abortion.


Subject(s)
Aborted Fetus/virology , Camelus/virology , Newcastle disease virus/isolation & purification , Animals , Columbidae/virology , Egypt/epidemiology , Genome, Viral/genetics , Genotype , Newcastle Disease/epidemiology , Newcastle Disease/virology , Newcastle disease virus/classification , Newcastle disease virus/genetics , Phylogeny , Viral Proteins/genetics
17.
Chromosoma ; 128(1): 21-29, 2019 03.
Article in English | MEDLINE | ID: mdl-30448925

ABSTRACT

The structure and organization of a species genome at a karyotypic level, and in interphase nuclei, have broad functional significance. Although regular sized chromosomes are studied extensively in this regard, microchromosomes, which are present in many terrestrial vertebrates, remain poorly explored. Birds have more cytologically indistinguishable microchromosomes (~ 30 pairs) than other vertebrates; however, the degree to which genome organization patterns at a karyotypic and interphase level differ between species is unknown. In species where microchromosomes have fused to other chromosomes, they retain genomic features such as gene density and GC content; however, the extent to which they retain a central nuclear position has not been investigated. In studying 22 avian species from 10 orders, we established that, other than in species where microchromosomal fusion is obvious (Falconiformes and Psittaciformes), there was no evidence of microchromosomal rearrangement, suggesting an evolutionarily stable avian genome (karyotypic) organization. Moreover, in species where microchromosomal fusion has occurred, they retain a central nuclear location, suggesting that the nuclear position of microchromosomes is a function of their genomic features rather than their physical size.


Subject(s)
Birds/genetics , Chromosomes/ultrastructure , Genome , Phylogeny , Synteny , Animals , Biological Evolution , Birds/classification , Chromosome Painting/methods , Karyotyping , Recombination, Genetic , Species Specificity
18.
Genome Biol ; 19(1): 171, 2018 10 24.
Article in English | MEDLINE | ID: mdl-30355328

ABSTRACT

BACKGROUND: The number of de novo genome sequence assemblies is increasing exponentially; however, relatively few contain one scaffold/contig per chromosome. Such assemblies are essential for studies of genotype-to-phenotype association, gross genomic evolution, and speciation. Inter-species differences can arise from chromosomal changes fixed during evolution, and we previously hypothesized that a higher fraction of elements under negative selection contributed to avian-specific phenotypes and avian genome organization stability. The objective of this study is to generate chromosome-level assemblies of three avian species (saker falcon, budgerigar, and ostrich) previously reported as karyotypically rearranged compared to most birds. We also test the hypothesis that the density of conserved non-coding elements is associated with the positions of evolutionary breakpoint regions. RESULTS: We used reference-assisted chromosome assembly, PCR, and lab-based molecular approaches, to generate chromosome-level assemblies of the three species. We mapped inter- and intrachromosomal changes from the avian ancestor, finding no interchromosomal rearrangements in the ostrich genome, despite it being previously described as chromosomally rearranged. We found that the average density of conserved non-coding elements in evolutionary breakpoint regions is significantly reduced. Fission evolutionary breakpoint regions have the lowest conserved non-coding element density, and intrachromomosomal evolutionary breakpoint regions have the highest. CONCLUSIONS: The tools used here can generate inexpensive, efficient chromosome-level assemblies, with > 80% assigned to chromosomes, which is comparable to genomes assembled using high-density physical or genetic mapping. Moreover, conserved non-coding elements are important factors in defining where rearrangements, especially interchromosomal, are fixed during evolution without deleterious effects.


Subject(s)
Chromosomes/genetics , Falconiformes/genetics , Gene Rearrangement/genetics , Genome , Melopsittacus/genetics , Struthioniformes/genetics , Animals , Chromosomes, Artificial, Bacterial/genetics , Conserved Sequence/genetics , DNA, Intergenic/genetics , Genomics , Species Specificity
19.
J Gen Virol ; 98(6): 1349-1359, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28613145

ABSTRACT

The recent emergence of Middle East respiratory syndrome (MERS) coronavirus and its discovery from dromedary camels has boosted interest in the search for novel viruses in dromedaries. While bocaparvoviruses are known to infect various animals, it was not known that they exist in dromedaries. In this study, we describe the discovery of two novel dromedary camel bocaparvoviruses (DBoVs), DBoV1 and DBoV2, from dromedary faecal samples in Dubai. Among 667 adult dromedaries and 72 dromedary calves, 13.9 % of adult dromedaries and 33.3 % of dromedary calves were positive for DBoV1, while 7.0 % of adult dromedaries and 25.0 % of dromedary calves were positive for DBoV2, as determined by PCR. Sequencing of 21 DBoV1 and 18 DBoV2 genomes and phylogenetic analysis showed that DBoV1 and DBoV2 formed two distinct clusters, with only 32.6-36.3 % amino acid identities between the DBoV1 and DBoV2 strains. Quasispecies were detected in both DBoVs. The amino acid sequences of the NS1 proteins of all the DBoV1 and DBoV2 strains showed <85 % identity to those of all the other bocaparvoviruses, indicating that DBoV1 and DBoV2 are two bocaparvovirus species according to the ICTV criteria. Although the typical genome structure of NS1-NP1-VP1/VP2 was observed in DBoV1 and DBoV2, no phospholipase A2 motif and associated calcium binding site were observed in the predicted VP1 sequences for any of the 18 sequenced DBoV2, and no start codons were found for their VP1. For all 18 DBoV2 genomes, an AT-rich region of variable length and composition was present downstream to NP1. Further studies will be crucial to understand the pathogenic potential of DBoVs in this unique group of animals.


Subject(s)
Bocavirus/classification , Bocavirus/isolation & purification , Camelus/virology , Feces/virology , Parvoviridae Infections/veterinary , Animals , Bocavirus/genetics , Cluster Analysis , Gene Order , Genome, Viral , Parvoviridae Infections/virology , Phylogeny , Polymerase Chain Reaction , Sequence Analysis, DNA , Sequence Homology, Amino Acid , United Arab Emirates
20.
Genome Res ; 27(5): 875-884, 2017 05.
Article in English | MEDLINE | ID: mdl-27903645

ABSTRACT

Most recent initiatives to sequence and assemble new species' genomes de novo fail to achieve the ultimate endpoint to produce contigs, each representing one whole chromosome. Even the best-assembled genomes (using contemporary technologies) consist of subchromosomal-sized scaffolds. To circumvent this problem, we developed a novel approach that combines computational algorithms to merge scaffolds into chromosomal fragments, PCR-based scaffold verification, and physical mapping to chromosomes. Multigenome-alignment-guided probe selection led to the development of a set of universal avian BAC clones that permit rapid anchoring of multiple scaffolds to chromosomes on all avian genomes. As proof of principle, we assembled genomes of the pigeon (Columbia livia) and peregrine falcon (Falco peregrinus) to chromosome levels comparable, in continuity, to avian reference genomes. Both species are of interest for breeding, cultural, food, and/or environmental reasons. Pigeon has a typical avian karyotype (2n = 80), while falcon (2n = 50) is highly rearranged compared to the avian ancestor. By using chromosome breakpoint data, we established that avian interchromosomal breakpoints appear in the regions of low density of conserved noncoding elements (CNEs) and that the chromosomal fission sites are further limited to long CNE "deserts." This corresponds with fission being the rarest type of rearrangement in avian genome evolution. High-throughput multiple hybridization and rapid capture strategies using the current BAC set provide the basis for assembling numerous avian (and possibly other reptilian) species, while the overall strategy for scaffold assembly and mapping provides the basis for an approach that (provided metaphases can be generated) could be applied to any animal genome.


Subject(s)
Chromosomes/genetics , Contig Mapping/methods , Genome , Genomics/methods , Animals , Avian Proteins/genetics , Chromosome Breakpoints , Columbidae/genetics , Conserved Sequence , Contig Mapping/standards , Falconiformes/genetics , Genomics/standards , Reference Standards
SELECTION OF CITATIONS
SEARCH DETAIL
...