Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22270035

ABSTRACT

ImportanceEarly treatment of mild SARS-CoV-2 infection might lower the risk of clinical deterioration in COVID-19. ObjectiveTo determine whether oral camostat mesylate would reduce upper respiratory SARS-CoV-2 viral load in newly diagnosed outpatients with mild COVID-19, and would lead to improvement in COVID-19 symptoms. DesignFrom June, 2020 to April, 2021, we conducted a randomized, double-blind, placebo-controlled phase 2 trial. SettingSingle site, academic medical center, outpatient setting in Connecticut, USA. ParticipantsOf 568 COVID-19 positive potential adult participants diagnosed within 3 days of study entry and assessed for eligibility, 70 were randomized and 498 were excluded (198 did not meet eligibility criteria, 37 were not interested, 265 were excluded for unknown or other reasons). The primary inclusion criteria were a positive SARS-CoV-2 nucleic acid amplification result in adults within 3 days of screening regardless of COVID-19 symptoms. InterventionTreatment was 7 days of oral camostat mesylate, 200 mg po four times a day, or placebo. Main Outcomes and MeasuresThe primary outcome was reduction of 4-day log10 nasopharyngeal swab viral load by 0.5 log10 compared to placebo. The main prespecified secondary outcome was reduction in symptom scores as measured by a quantitative Likert scale instrument, Flu-PRO-Plus modified to measure changes in smell/taste measured using FLU-PRO-Plus. ResultsParticipants receiving camostat had statistically significant lower quantitative symptom scores (FLU-Pro-Plus) at day 6, accelerated overall symptom resolution and notably improved taste/smell, and fatigue beginning at onset of intervention in the camostat mesylate group compared to placebo. Intention-to-treat analysis demonstrated that camostat mesylate was not associated with a reduction in 4-day log10 NP viral load compared to placebo. Conclusions and relevanceThe camostat group had more rapid resolution of COVID-19 symptoms and amelioration of the loss of taste and smell. Camostat compared to placebo was not associated with reduction in nasopharyngeal SARS-COV-2 viral load. Additional clinical trials are warranted to validate the role of camostat mesylate on SARS-CoV-2 infection in the treatment of mild COVID-19. Trial registration: Clinicaltrials.gov, NCT04353284 (04/20/20)(https://clinicaltrials.gov/ct2/show/NCT04353284?term=camostat+%2C+yale&draw=2&rank=1) Key PointsO_ST_ABSQuestionC_ST_ABSWill early treatment of COVID-19 with a repurposed medication, camostat mesylate, improve clinical outcomes? FindingsIn this phase 2 randomized, double-blind placebo-controlled clinical trial that included 70 adults with early COVID-19, the oral administration of camostat mesylate treatment within 3 days of diagnosis prevented the loss of smell/taste and reduced the duration of illness. MeaningIn the current COVID-19 pandemic, phase III testing of an inexpensive, repurposed drug for early COVID-19 is warranted.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-459464

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease (COVID-19), continues to be a pressing health concern. In this study, we investigated the impact of SARS-CoV-2 infection on host microRNA (miRNA) populations in three human lung-derived cell lines, as well as in nasopharyngeal swabs from SARS-CoV-2 infected individuals. We did not detect any major and consistent differences in host miRNA levels after SARS-CoV-2 infection. However, we unexpectedly discovered a viral miRNA-like small RNA, named vmiR-5p (for viral miRNA), derived from the SARS-CoV-2 ORF7a transcript. Its abundance ranges from low to moderate as compared to host miRNAs. vmiR-5p functionally associates with Argonaute proteins -- core components of the RNA interference pathway -- leading to downregulation of host transcripts. One such host messenger RNA encodes Basic Leucine Zipper ATF-Like Transcription Factor 2 (BATF2), which is linked to interferon signaling. We demonstrate that vmiR-5p production relies on cellular machinery, yet is independent of Drosha protein, and is enhanced by the presence of a strong and evolutionarily conserved hairpin formed within the ORF7a sequence. Significance statementWe discovered that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) expresses a small viral non-coding RNA, named vmiR-5p (for viral miRNA), derived from the ORF7a transcript. vmiR-5p associates with the cellular RNA interference machinery to regulate host transcripts likely via target silencing. The production of vmiR-5p relies on cellular machinery and the formation of a strong hairpin within ORF7a sequences. This newly-described vmiR-5p may contribute to SARS-CoV-2 pathogenesis and could become a target for therapeutic intervention.

SELECTION OF CITATIONS
SEARCH DETAIL