Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Environ Res ; 252(Pt 2): 118888, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38599448

ABSTRACT

Organophosphorus compounds (OP) are highly toxic pesticides and nerve agents widely used in agriculture and chemical warfare. The extensive use of these chemicals has severe environmental implications, such as contamination of soil, water bodies, and food chains, thus endangering ecosystems and biodiversity. Plants absorb pesticide residues, which then enter the food chain and accumulate in the body fat of both humans and animals. Numerous human cases of OP poisoning have been linked to both acute and long-term exposure to these toxic OP compounds. These compounds inhibit the action of the acetylcholinesterase enzyme (AChE) by phosphorylation, which prevents the breakdown of acetylcholine (ACh) neurotransmitter into choline and acetate. Thus, it becomes vital to cleanse the environment from these chemicals utilizing various physical, chemical, and biological methods. Biological methods encompassing bioremediation using immobilized microbes and enzymes have emerged as environment-friendly and cost-effective approaches for pesticide removal. Cell/enzyme immobilized systems offer higher stability, reusability, and ease of product recovery, making them ideal tools for OP bioremediation. Interestingly, enzymatic bioscavengers (stoichiometric, pseudo-catalytic, and catalytic) play a vital role in detoxifying pesticides from the human body. Catalytic bioscavenging enzymes such as Organophosphate Hydrolase, Organophosphorus acid anhydrolase, and Paraoxonase 1 show high degradation efficiency within the animal body as well as in the environment. Moreover, these enzymes can also be employed to decontaminate pesticides from food, ensuring food safety and thus minimizing human exposure. This review aims to provide insights to potential collaborators in research organizations, government bodies, and industries to bring advancements in the field of bioremediation and bioscavenging technologies for the mitigation of OP-induced health hazards.


Subject(s)
Biodegradation, Environmental , Organophosphorus Compounds , Humans , Pesticides , Animals , Enzymes, Immobilized/metabolism , Environmental Pollutants
2.
Analyst ; 149(4): 1297-1309, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38240628

ABSTRACT

Rising pollution of heavy metals is one of the greatest concerns, especially in water resources globally and has led to significant adverse effects to human health. To uplift the status of human health, detection of heavy metals is of key importance. This study establishes the ability of carbon quantum dot (CQD)-based thin films for the detection of total heavy metal counts based on a fluorescence-based mechanism in various water resources using a fiber optic spectrometer (FOS) device. CQDs and CQD thin films were characterized using various techniques, such as X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), X-ray diffraction (XRD), and confocal laser scanning microscopy (CLSM), and the sensing capability was evaluated for the detection of heavy metals using an optical fiber system. The analytical parameters of the CQD-based thin film were compared with the estimation carried out using a micro plasma-atomic emission spectroscopy (MP-AES) method. The sensing performances of CQD thin films indicate that they are able to detect five heavy metals individually (lead, nickel, manganese, cobalt and chromium) in combination with a response time of 1 minute. The CQD thin films were able to detect heavy metals with a detection limit of 0.006-0.019 ppm for the analyzed heavy metals with a linear range of estimation analyzed as 0-100 µM. The accuracy of the estimation of all five heavy metals when spiked in various real water samples lies in the range of 100-103%. The result of the study clearly indicates that CQD thin films associated with a fiber optic device have the potential to play a role in point-of-care devices for total heavy metal count detection in complex matrices of water.

3.
Environ Res ; 243: 117855, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38070850

ABSTRACT

Organophosphates pesticide (OP) toxicity through water resources is a large concern globally among all the emerging pollutants. Detection of OPs is a challenge which needs to be addressed considering the hazardous effects on the health of human beings. In the current research thin film biosensors of recombinant, Organophosphorus acid anhydrolase (OPAA) enzyme along with carbon quantum dots (CQDs) immobilized in thin films were developed. OPAA-CQDs thin film biosensors were used for the specific detection of two OPs Ethyl Paraoxon (EP) and Methyl Parathion (MP) in river water and household water supply. Recombinant OPAA enzyme was expressed in E. Coli, purified and immobilized on the CQD containing chitosan thin films. The CQDs used for this purpose were developed by a one-pot hydrothermal method from phthalic acid and Tri ethylene diamine. The properties of CQDs, OPAA and thin films were characterized using techniques like XPS, TEM, XRD, enzyme activity and CLSM measurements. Biosensing studies of EP and MP were performed by taking fluorescence measurements using a fiber optic spectrometer. The analytical parameters of biosensing were compared against an estimation carried out using the HPLC method. The biosensing performance indicates that the OPAA-CQDs thin film-based biosensors were able to detect both EP and MP in a range of 0-100 µM having a detection limit of 0.18 ppm/0.69 ppm for EP/MP, respectively with a response time of 5 min. The accuracy of estimation of EP/MP when spiked in water resources lie in the range of ∼100-102% which clearly indicates the OPAA-CQD based thin film biosensors can function as a point-of-use method for the detection of OP pesticides in complex water resources.


Subject(s)
Biosensing Techniques , Methyl Parathion , Parathion , Pesticides , Quantum Dots , Humans , Paraoxon , Aryldialkylphosphatase , Carbon , Water Resources , Escherichia coli , Pesticides/analysis , Biosensing Techniques/methods
4.
J Pharmacol Exp Ther ; 388(1): 39-53, 2024 01 02.
Article in English | MEDLINE | ID: mdl-37875308

ABSTRACT

Peptides and proteins have recently emerged as efficient therapeutic alternatives to conventional therapies. Although they emerged a few decades back, extensive exploration of various ailments or disorders began recently. The drawbacks of current chemotherapies and irradiation treatments, such as drug resistance and damage to healthy tissues, have enabled the rise of peptides in the quest for better prospects. The chemical tunability and smaller size make them easy to design selectively for target tissues. Other remarkable properties include antifungal, antiviral, anti-inflammatory, protection from hemorrhage stroke, and as therapeutic agents for gastric disorders and Alzheimer and Parkinson diseases. Despite these unmatched properties, their practical applicability is often hindered due to their weak susceptibility to enzymatic digestion, serum degradation, liver metabolism, kidney clearance, and immunogenic reactions. Several methods are adapted to increase the half-life of peptides, such as chemical modifications, fusing with Fc fragment, change in amino acid composition, and carrier-based delivery. Among these, nanocarrier-mediated encapsulation not only increases the half-life of the peptides in vivo but also aids in the targeted delivery. Despite its structural complexity, they also efficiently deliver therapeutic molecules across the blood-brain barrier. Here, in this review, we tried to emphasize the possible potentiality of metallic nanoparticles to be used as an efficient peptide delivery system against brain tumors and neurodegenerative disorders. SIGNIFICANCE STATEMENT: In this review, we have emphasized the various therapeutic applications of peptides/proteins, including antimicrobial, anticancer, anti-inflammatory, and neurodegenerative diseases. We also focused on these peptides' challenges under physiological conditions after administration. We highlighted the importance and potentiality of metallic nanocarriers in the ability to cross the blood-brain barrier, increasing the stability and half-life of peptides, their efficiency in targeting the delivery, and their diagnostic applications.


Subject(s)
Nanoparticles , Neurodegenerative Diseases , Humans , Drug Carriers/chemistry , Nanoparticles/chemistry , Brain , Blood-Brain Barrier/metabolism , Peptides/chemistry , Neurodegenerative Diseases/metabolism , Anti-Inflammatory Agents , Drug Delivery Systems
5.
J Basic Microbiol ; 63(12): 1451-1463, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37718380

ABSTRACT

The current study focuses on analyzing the effects of supplements containing silver nanoparticles (AgNPs) on plant growth and rhizospheric bacterial communities. Specifically, the impact of AgNP supplements was assessed on both plant growth promoting traits and bacterial communities in the soil. To do this, a screening process was conducted to select bacteria capable of synthesizing AgNPs through extracellular biosynthesis. UV-Visible spectrophotometer, Fourier transform infrared, X-ray diffraction, scanning electron microscope, and field emission scanning electron microscopy all confirmed, produced AgNPs is in agglomerates form. The resulting AgNPs were introduced into soil along with various supplements and their effects were evaluated after 10 days using next generation sequencing (Illumina-16S rDNA V3-V4 region dependent) to analyze changes in bacterial communities. Seed germination, root-shoot biomass and chlorophyll content were used to assess the growth of the cotton plant, whereas the bacterial ability to promote growth was evaluated by measuring its culturable diversity including traits like phosphate solubilization and indole acetic acid production. The variance in Bray-Curtis ß diversity among six selected combinations including control depends largely on the type of added supplements contributing to 95%-97% of it. Moreover, seed germination improves greatly between 63% and 100% at a concentration range of 1.4 to 2.8 mg/L with different types of supplements. Based on the results obtained through this study, it is evident that using AgNPs along with fructose could be an effective tool for promoting Gossypium hirsutum growth and enhancing plant growth traits like profiling rhizospheric bacteria. The results that have been obtained endorse the idea of boosting the growth of rhizospheric bacteria in a natural way when AgNPs are present. Using these supplements in fields that have been contaminated will lead to a better understanding of how ecological succession occurs among rhizospheric bacteria, and what effect it has on the growth of plants.


Subject(s)
Metal Nanoparticles , Microbiota , Gossypium , Silver/pharmacology , Rhizosphere , Bacteria , Soil , Anti-Bacterial Agents/pharmacology
6.
Analyst ; 148(20): 5178-5189, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37721153

ABSTRACT

Industrialization, especially in textile industries, has led to increased use of dyes and pigments to impart colours to fabrics. Textile dyes are one of the chief emerging pollutants of water resources as industrial effluents. In the current research, we report the development and utilization of pH-sensitive carbon quantum dots (CQDs) immobilized in polymer thin films acting as sensors for textile dye detection. The CQDs and CQD-containing polymer films were characterized by various techniques like XRD, TEM, XPS, and CLSM. The synthesized CQD thin films possess a unique pH-sensitive property that can be used to detect various model acidic and basic dyes that are important components of industrial effluents from textile dyes. The detection capability of the sensor films was evaluated by spiking dyes in various water matrices, like household tap water and river water. The results indicate that pH-sensitive CQD thin film was able to detect three acidic dyes, namely methyl red, methyl orange, and bromocresol green, and one basic dye, methylene blue, in a linear range of 0-100 µM with a response time of 1 minute. The CQD thin-film sensors have a limit of detection of 26.4 ppb, 214.5 ppb, 46.2 ppb, and 29.7 ppb for methyl red, methyl orange, bromocresol green and methylene blue, respectively. The accuracy of detection performed by spiking studies in water resources indicated an ∼100% recovery value in all tested acidic and basic dyes. The sensor films were compared for analytical parameters using UV-visible-fluorescence spectroscopy and HPLC.

7.
J Neuroimmune Pharmacol ; 18(1-2): 215-234, 2023 06.
Article in English | MEDLINE | ID: mdl-37285016

ABSTRACT

The action potential conduction along the axon is highly dependent on the healthy interactions between the axon and myelin-producing glial cells. Myelin, which facilitates action potential, is the protective insulation around the axon formed by Schwann cells and oligodendrocytes in the peripheral (PNS) and central nervous system (CNS), respectively. Myelin is a continuous structure with intermittent gaps called nodes of Ranvier, which are the sites enriched with ion channels, transmembrane, scaffolding, and cytoskeletal proteins. Decades-long extensive research has identified a comprehensive proteome with strictly regularized localization at the node of Ranvier. Concurrently, axon-glia interactions at the node of Ranvier have gathered significant attention as the pathophysiological targets for various neurodegenerative disorders. Numerous studies have shown the alterations in the axon-glia interactions culminating in neurological diseases. In this review, we have provided an update on the molecular composition of the node of Ranvier. Further, we have discussed in detail the consequences of disruption of axon-glia interactions during the pathogenesis of various CNS and PNS disorders.


Subject(s)
Peripheral Nervous System Diseases , Ranvier's Nodes , Humans , Ranvier's Nodes/metabolism , Ranvier's Nodes/pathology , Neuroglia/metabolism , Myelin Sheath/pathology , Myelin Sheath/physiology , Axons/metabolism
8.
ACS Appl Bio Mater ; 6(5): 1943-1952, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37126316

ABSTRACT

Theranostic nanoparticulate systems (TNPs) have shown potential in addressing problems related to spatial localization and temporally controlled release of drugs with the capabilities of real-time imaging to evaluate the progress of therapy. The current study reports the ultrasonic atomization-led synthesis of in vitro and in vivo evaluations of ultrasmall chitosan-based theranostic nanohybrid formulations with encapsulated doxorubicin (DOX) and iron-oxide magnetic nanoparticles. The nanohybrid particles are characterized using transmission electron microscopy, powder X-ray diffraction, FTIR, DOX encapsulation efficiency, in vitro release, cellular uptake, and toxicity. These formulations were also tested for the capability of invivo tumor reduction and simultaneous magnetic resonance imaging using Swiss albino mice. Ultrasonic atomizer-led synthesis resulted in chitosan-magnetic nanohybrids (CMNPs) having sizes of 15 ± 3 nm which comprise MNP of 10 ± 3 nm. The encapsulation of DOX in CMNP was around 25%, resulting in an 80% sustained release over 10 days at pH 5 and 7. CMNP was also found to be an efficient DOX delivery vehicle tested on cancer cells (HeLa). The CMNPs were able to reduce the tumor volume by 60% in 15 days. The inherent magnetic property and nanoscale size of CMNPs also provided for enhanced contrast efficiency in magnetic resonance imaging of tumors. Thus, such multifunctional theranostic nanoparticles can be an efficient tool for targeted diagnostic and therapeutic success.


Subject(s)
Chitosan , Precision Medicine , Animals , Mice , Chitosan/chemistry , Ultrasonics , Drug Delivery Systems , Doxorubicin/chemistry , Magnetic Resonance Imaging
9.
Environ Technol ; : 1-11, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37248828

ABSTRACT

Heavy metal pollution and toxicity from water resources have remained a great concern for the entire population. This research demonstrates the capability of carbon quantum dots (CQDs) for fluorescence-based heavy metal detection in different water resources using a fibre-optic spectrometer device. Two different types of CQDs phthalic acid and triethylenediamine (PT CQDs) and Folic acid (FCQDs) were synthesized using microwave irradiation and hydrothermal method, respectively. CQDs were characterized using several techniques such as TEM, EDX, XPS and FTIR. PTCQD and FCQDs both were tested for sensing capability in water reservoirs like household and river water. The results indicate that both CQDs were able to detect all six heavy metal ions (Pb2+, Co2+, Mn3+, Hg2+, Ni2+, Cr3+) tested in the study in the range of 0-100 µM. It was found that FCQDs show a three-fold higher sensitivity and greater resolution than PTCQDs for all the heavy metals samples. The CQDs' sensing capability shows that they can achieve a limit of detection in the range of 0.15-3 µM along with 100% accuracy in terms of recovery with minimal error, these results indicate that both CQDs have a tremendous potential to be used as a sensor for the detection of heavy metals even in complex water matrices. FCQDs show more sensitivity for all metals compared to PTCQDs and used in future as a sensing tool for heavy metal detection with better sensitivity and accuracy with less response time.

11.
Crit Rev Biotechnol ; 43(4): 521-539, 2023 Jun.
Article in English | MEDLINE | ID: mdl-35504858

ABSTRACT

The human population is dependent on agriculture for its food requirements and survival. Several insecticides and pesticides have found their use for improvements in agricultural yields. Organophosphates (OP) are one of the many compounds used as insecticides and pesticides. OPs have also been used to develop G and V-series chemicals which act as highly toxic nerve agents that can severely influence the normal function of the nervous system in all living beings. Thus, OP compounds utilized as insecticides/pesticides and nerve agents are hazardous to the environment, lethal for humans and other non-target animals. To avoid their toxicity, approaches to detect and neutralize them have become essential. A variety of analytical procedures such as electrochemical processes and chromatography methods, namely liquid and gas chromatography, have been employed to detect OPs. Though these techniques are sensitive and highly accurate they suffer from drawbacks, for instance: their bulky nature and expensive instrumentation, the difficulty of operation, long detection times, and they can yield unpredictable results with variable sample complexities. With the advent of several types of biosensors, the assay of OP compounds has become simpler, faster, cost-effective with improved sensitivity, and provides the capability for onsite detection. OP biosensor assays typically utilize several enzymes with the capability to hydrolyze/degrade OP compounds, such as organophosphate hydrolase (OPH) and organophosphate acid hydrolase (OPAA). This review focuses on discussing various aspects of OPAA as biological recognition unit in terms of its: structure, properties, activity enhancement methods, and utilization for developing OPAA-based biosensing technologies for insecticides, pesticides, and nerve agents.


Subject(s)
Biosensing Techniques , Insecticides , Nerve Agents , Pesticides , Animals , Humans , Aryldialkylphosphatase/chemistry , Aryldialkylphosphatase/metabolism , Organophosphates , Organophosphorus Compounds/analysis , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/metabolism , Pesticides/analysis , Biosensing Techniques/methods
12.
Biomed Microdevices ; 24(4): 32, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36169742

ABSTRACT

Diagnosis of prostate cancer (PC) has posed a challenge worldwide due to the sophisticated and costly diagnostics tools, which include DRE, TRUS, GSU, PET/CT scan, MRI, and biopsy. These diagnostic techniques are very helpful in the detection of PCs; however, all the techniques have their serious limitations. Biosensors are easier to fabricate and do not require any cutting-edge technology as required for other imaging techniques. In this regard, point-of-care (POC) biosensors are important due to their portability, convenience, low cost, and fast procedure. This review explains the various existing diagnostic tools for the detection of PCs and the limitation of these methods. It also focuses on the recent studies on biosensors technologies as an alternative to the conventional diagnostic techniques for the detection of PCs.


Subject(s)
Biosensing Techniques , Prostatic Neoplasms , Biosensing Techniques/methods , Humans , Magnetic Resonance Imaging/methods , Male , Point-of-Care Systems , Positron Emission Tomography Computed Tomography , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/pathology
13.
ACS Biomater Sci Eng ; 8(7): 3054-3065, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35709526

ABSTRACT

The effective loading or encapsulation of multimodal theranostic agents within a nanocarrier system plays an important role in the clinical development of cancer therapy. In recent years, the silk fibroin protein-based delivery system has been drawing significant attention to be used in nanomedicines due to its biocompatible and biodegradable nature. In this study, silk fibroin nanoparticles (SNPs) have been synthesized by a novel and cost-effective ultrasonic atomizer-based technique for the first time. The fabricated SNPs were coencapsulated by the FDA-approved indocyanine green (ICG) dye and the chemotherapeutic drug doxorubicin (DOX). The synthesized SNPs are spherical, with an average diameter of ∼37 ± 4 nm, and the ICG-DOX-coencapsulated SNPs (ID-SNPs) have a diameter size of ∼47 ± 6 nm. For the first time, here we demonstrate that DOX helps in the higher loading of ICG within the ID-SNPs, which enhances the encapsulation efficiency of ICG by ∼99%. This could be attributed to the interaction of ICG and DOX molecules with the silk fibroin protein, which helps ICG to get loaded more efficiently within these nanoparticles. The overall finding of this study suggests that the ID-SNPs could be utilized for enhanced ICG-complemented multimodal deep-tissue bioimaging and synergistic chemo-photothermal therapy.


Subject(s)
Fibroins , Hyperthermia, Induced , Nanoparticles , Doxorubicin/pharmacology , Hyperthermia, Induced/methods , Indocyanine Green/therapeutic use , Phototherapy/methods
14.
Drug Deliv Transl Res ; 12(7): 1588-1604, 2022 07.
Article in English | MEDLINE | ID: mdl-34537930

ABSTRACT

The most challenging task in targeting the brain is trespassing the blood-brain barrier (BBB) which restricts the movement of about 98% small molecules. Targeting the central nervous system using magnetic nanoparticles may deliver the drug to the target site along with a contrast imaging property. The use of magnetic nanoparticles can become non-invasive drug targeting and a bio-imaging method for brain cancer. The strategy to apply polymeric nanoparticles as a carrier of magnetic iron oxide nanoparticles can be a promising tool as a multitherapeutic drug delivery approach involving delivery of chemotherapeutic drugs with a magnetic targeting approach, imaging, and hyperthermia. This review will highlight the existing difficulties/barriers in crossing the BBB, types of magnetic materials, polymeric carriers for functionalization of magnetic nanoparticles, and targeting strategies as therapeutic and imaging modalities. Utilization of polymeric magnetic nanoparticles as an efficient targeting platform for better drug delivery and imaging for brain cancer and future prospects are also discussed. Polymeric magnetic nanoparticles as a drug delivery and bio-imaging vehicle for brain cancer.


Subject(s)
Brain Neoplasms , Magnetite Nanoparticles , Nanoparticles , Blood-Brain Barrier , Brain/pathology , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/drug therapy , Drug Carriers , Drug Delivery Systems/methods , Humans , Polymers
15.
Int J Phytoremediation ; 24(5): 536-556, 2022.
Article in English | MEDLINE | ID: mdl-34340616

ABSTRACT

This review analyses the account of biological (microalgae) and synthetic (bio-polymeric adsorbents) elements to compass the treatment efficiencies of various water pollutants and mechanisms behind them. While considering pollutant removal, both techniques have their own merits and demerits. Microalgal-based methods have been dominantly used as a biological method for pollutant removal. The main limitations of microalgal methods are capacity, scale, dependence on variables of environment and duration of the process. Biopolymers on the other hand are naturally produced, abundant in nature, environmentally safe and biocompatible with cells and many times biodegradable. Algal immobilization in biopolymers has promoted the reuse of cells for further treatment and protected cells from toxic environment monitoring and controlling the external factors like pH, temperature and salinity can promote the removal process while working with the mentioned technologies. In this review, a mechanistic view of both these techniques along with integrated approaches emphasizing on their loopholes and possibilities of improvement in these techniques is represented. In addition to these, the review also discusses the post-treatment effect on algal cells which are specifically dependent on pollutant type and their concentration. All these insights will aid in developing integrated solutions to improve removal efficiencies in an environmentally safe and cost-effective manner.Novelty statement The main objective of this review is to thoroughly understand the role of micro-algal cells and synthetic adsorbents individually as well as their integrative effect in the removal of pollutants from wastewater. Many reviews have been published containing information related to either removal mechanism by algae or synthetic adsorbents. While in this review we have discussed the agents, algae and synthetic adsorbents along with their limitations and explained how these limitations can be overcome with the integration of both the moieties together in process of immobilization. We have covered both the analytical and mechanistic parts of these technologies. Along with this, the post-treatment effects on algae have been discussed which can give us a critical understanding of algal response to pollutants and by-products obtained after treatment. This review contains three different sections, their importance and also explained how these technologies can be improved in the future aspects.


Subject(s)
Microalgae , Water Pollutants, Chemical , Water Pollutants , Water Purification , Biodegradation, Environmental , Microalgae/physiology , Wastewater/analysis , Water Pollutants, Chemical/analysis , Water Purification/methods
16.
Bioresour Technol ; 345: 126490, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34875373

ABSTRACT

A novel earthen separator-based dual-chambered unplanted core of constructed wetland coupled with microbial fuel cell was developed for studying the microbe-material interaction and their effect on treatment performance and electricity generation. The constructed wetland integrated microbial fuel cell was evaluated for the degradation of high molecular weight diazo Congo red dye as a model pollutant. The system exhibited 89.99 ± 0.04% of dye decolorization and 95.80 ± 0.71% of chemical oxygen demand removal efficiency from an initial concentration of 50 ± 10 mg/L and 750 ± 50 mg/L, respectively. Ultraviolet-Visible spectrophotometric and gas chromatography-mass spectrometric analysis revealed naphthalene and phenol as mineralized products. The developed system achieved high power density and current density generation of 235.94 mW/m3 and 1176.4 mA/m3, respectively. Results manifested that dual-chambered constructed wetland coupled with microbial fuel cell has a high capability of dye decolorization and toxicity abatement with appreciable simultaneous bioelectricity generation owing to the significantly low internal resistance of 100 Ω.


Subject(s)
Bioelectric Energy Sources , Azo Compounds , Electricity , Electrodes , Wastewater , Wetlands
17.
Indian J Nephrol ; 31(4): 406-409, 2021.
Article in English | MEDLINE | ID: mdl-34584361

ABSTRACT

Wegener's granulomatosis or granulomatosis with polyangiitis (GPA) is multisystemic vasculitis. Kidney involvement in GPA often presents with rapidly progressive renal failure and requires urgent treatment. A 60-year-old female presented with prolonged history of fever, generalized weakness, decreased appetite, and weight loss over 4 months. Her renal function was normal; urine culture was sterile. On further evaluation, she was found to have large, hypodense solid lesion in mid pole of the right kidney on CECT. CT guided renal biopsy was done, which showed granulomatous interstitial nephritis with focal crescents. On further evaluation, she was found to have high titers of anti-MPO antibody. She was started on steroid and methotrexate with subsidence of fever. Follow-up after 12 months showed resolution of the lesion. GPA solely presenting as solid mass like lesion in the kidney is extremely rare presentation. Early diagnosis and prompt initiation of the treatment can prevent the progression of the disease.

18.
Curr Biol ; 31(17): 3810-3819.e4, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34289389

ABSTRACT

Skeletal muscle contraction depends on activation of clustered acetylcholine receptors (AchRs) and muscle-specific Na+ channels (Nav1.4). Some Nav1.4 channels are highly enriched at the neuromuscular junction (NMJ), and their clustering is thought to be essential for effective muscle excitation. However, this has not been experimentally tested, and how NMJ Na+ channels are clustered is unknown. Here, using muscle-specific ankyrinR, ankyrinB, and ankyrinG single, double, and triple-conditional knockout mice, we show that Nav1.4 channels fail to cluster only after deletion of all three ankyrins. Remarkably, ankyrin-deficient muscles have normal NMJ morphology, AchR clustering, sarcolemmal levels of Nav1.4, and muscle force, and they show no indication of degeneration. However, mice lacking clustered NMJ Na+ channels have significantly reduced levels of motor activity and their NMJs rapidly fatigue after repeated nerve-dependent stimulation. Thus, the triple redundancy of ankyrins facilitates NMJ Na+ channel clustering to prevent neuromuscular synapse fatigue.


Subject(s)
Ankyrins , Muscle, Skeletal , Animals , Ankyrins/genetics , Cluster Analysis , Fatigue , Mice , Synapses
19.
J Neurol Sci ; 427: 117507, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34130060

ABSTRACT

Chronic inflammatory demyelinating polyneuropathy (CIDP) is an autoimmune disorder causing inflammatory demyelination of peripheral nerves and consecutive disability. Diagnostic criteria and treatments are well established, but it is unknown how clinical practice may differ in different geographical regions. In this multicentre study, clinical management of CIDP was compared in 44 patients from Germany, India and Norway regarding diagnostic and therapeutic procedures. All centres used EFNS/PNS diagnostic criteria for CIDP but diagnostic workup varied regarding screening for infectious diseases, genetic testing and nerve biopsy. Intravenous immunoglobulin and prednisolone were the most common therapies in all centres with differences in indication and dosage. Patients from the Indian cohort were the most severely affected with less diverse therapeutic approaches, whereas psychological strain did not differ significantly from the two other cohorts. Our exploratory study discloses an unaddressed issue in management of CIDP that should be further investigated to optimise standard of care for CIDP worldwide.


Subject(s)
Polyradiculoneuropathy, Chronic Inflammatory Demyelinating , Biopsy , Europe , Humans , Immunoglobulins, Intravenous/therapeutic use , Peripheral Nerves , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/diagnosis , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/epidemiology , Polyradiculoneuropathy, Chronic Inflammatory Demyelinating/therapy
20.
Protein Expr Purif ; 186: 105929, 2021 10.
Article in English | MEDLINE | ID: mdl-34139322

ABSTRACT

Accumulation and exposure of organophosphate pesticides are of great concern today owing to their abundant usage and potential health hazards. Harmful effects of organophosphate pesticide exposure and limitations of the available treatment methods necessitate the development of reliable, selective, cost-effective, and sensitive methods of detection. We developed a novel biosensor based on the enzymatic action of recombinant organophosphorus hydrolase (OPH) expressed in E. coli. We report the development of colorimetric biosensors made of His-Nus-OPH as well as His-Nus-OPH loaded alginate microspheres. The colorimetric detection method developed using solution-phase and alginate-encapsulated His-Nus-OPH exhibited detection limits of 0.045 and 0.039 mM, respectively, for ethyl paraoxon, and 0.101 and 0.049 mM, respectively, for methyl parathion. Additionally, fluorescence measurement using pH-sensitive fluorescein isothiocyanate (FITC) was used to sense the quantity of organophosphorus pesticides. The fluorometric detection method using solution-phase His-Nus-OPH, with ethyl paraoxon and methyl parathion as the substrate, reveals the lower limit of detection as 0.014 mM and 0.044 mM, respectively. Our results demonstrate the viability of His-Nus-OPH for OP detection with good sensitivity, LOD, and linear range. We report the first use of N-terminal His-NusA-tagged OPH, which enhances solubility significantly and presents a significant advance for the scientific community.


Subject(s)
Aryldialkylphosphatase/genetics , Escherichia coli/genetics , Organophosphorus Compounds/analysis , Pesticides/analysis , Recombinant Proteins/genetics , Aryldialkylphosphatase/metabolism , Biosensing Techniques/methods , Escherichia coli/metabolism , Methyl Parathion/analysis , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...