Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters











Publication year range
1.
Clin Transl Med ; 14(5): e1664, 2024 May.
Article in English | MEDLINE | ID: mdl-38685487

ABSTRACT

BACKGROUND: Previously, we discovered that human solid tumours, but not normal human tissues, preferentially overexpress interleukin-13Receptor alpha2, a high binding receptor for IL-13. To develop novel anti-cancer approaches, we constructed a chimeric antigen receptor construct using a high binding and codon optimised scFv-IL-13Rα2 fragment fused with CD3ζ and co-stimulatory cytoplasmic domains of CD28 and 4-1BB. METHODS: We developed a scFv clone, designated 14-1, by biopanning the bound scFv phages using huIL-13Rα2Fc chimeric protein and compared its binding with our previously published clone 4-1. We performed bioinformatic analyses for complementary determining regions (CDR) framework and residue analyses of the light and heavy chains. This construct was packaged with helper plasmids to produce CAR-lentivirus and transduced human Jurkat T or activated T cells from peripheral blood mononuclear cells (PBMCs) to produce CAR-T cells and tested for their quality attributes in vitro and in vivo. Serum enzymes including body weight from non-tumour bearing mice were tested for assessing general toxicity of CAR-T cells. RESULTS: The binding of 14-1 clone is to IL-13Rα2Fc-chimeric protein is ∼5 times higher than our previous clone 4-1. The 14-1-CAR-T cells grew exponentially in the presence of cytokines and maintained phenotype and biological attributes such as cell viability, potency, migration and T cell activation. Clone 14-1 migrated to IL-13Rα2Fc and cell free supernatants only from IL-13Rα2+ve confluent glioma tumour cells in a chemotaxis assay. scFv-IL-13Rα2-CAR-T cells specifically killed IL-13Rα2+ve but not IL-13Rα2-ve tumour cells in vitro and selectively caused significant release of IFN-γ only from IL-13Rα2+ve co-cultures. These CAR-T cells regressed IL-13Rα2+ve glioma xenografts in vivo without any general toxicity. In contrast, the IL-13Rα2 gene knocked-down U251 and U87 xenografts failed to respond to the CAR-T therapy. CONCLUSION: Taken together, we conclude that the novel scFv-IL-13Rα2 CAR-T cell therapy may offer an effective therapeutic option after designing a careful pre-clinical and clinical study.


Subject(s)
Glioma , Interleukin-13 Receptor alpha2 Subunit , Humans , Interleukin-13 Receptor alpha2 Subunit/metabolism , Interleukin-13 Receptor alpha2 Subunit/genetics , Mice , Glioma/immunology , Glioma/therapy , Glioma/genetics , Glioma/pathology , Glioma/metabolism , Animals , Immunotherapy, Adoptive/methods , Disease Models, Animal , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/immunology
3.
J Transl Med ; 21(1): 367, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37286997

ABSTRACT

BACKGROUND: Chimeric antigen receptor (CAR) T cell therapy is an exciting cell-based cancer immunotherapy. Unfortunately, CAR-T cell therapy is associated with serious toxicities such as cytokine release syndrome (CRS) and neurotoxicity. The mechanism of these serious adverse events (SAEs) and how homing, distribution and retention of CAR-T cells contribute to toxicities is not fully understood. Enabling in vitro methods to allow meaningful, sensitive in vivo biodistribution studies is needed to better understand CAR-T cell disposition and its relationship to both effectiveness and safety of these products. METHODS: To determine if radiolabelling of CAR-T cells could support positron emission tomography (PET)-based biodistribution studies, we labeled IL-13Rα2 targeting scFv-IL-13Rα2-CAR-T cells (CAR-T cells) with 89Zirconium-oxine (89Zr-oxine) and characterized and compared their product attributes with non-labeled CAR-T cells. The 89Zr-oxine labeling conditions were optimized for incubation time, temperature, and use of serum for labeling. In addition, T cell subtype characterization and product attributes of radiolabeled CAR-T cells were studied to assess their overall quality including cell viability, proliferation, phenotype markers of T-cell activation and exhaustion, cytolytic activity and release of interferon-γ upon co-culture with IL-13Rα2 expressing glioma cells. RESULTS: We observed that radiolabeling of CAR-T cells with 89Zr-oxine is quick, efficient, and radioactivity is retained in the cells for at least 8 days with minimal loss. Also, viability of radiolabeled CAR-T cells and subtypes such as CD4 + , CD8 + and scFV-IL-13Rα2 transgene positive T cell population were characterized and found similar to that of unlabeled cells as determined by TUNEL assay, caspase 3/7 enzyme and granzyme B activity assay. Moreover, there were no significant changes in T cell activation (CD24, CD44, CD69 and IFN-γ) or T cell exhaustion (PD-1, LAG-3 and TIM3) markers expression between radiolabeled and unlabeled CAR-T cells. In chemotaxis assays, migratory capability of radiolabeled CAR-T cells to IL-13Rα2Fc was similar to that of non-labeled cells. CONCLUSIONS: Importantly, radiolabeling has minimal impact on biological product attributes including potency of CAR-T cells towards IL-13Rα2 positive tumor cells but not IL-13Rα2 negative cells as measured by cytolytic activity and release of IFN-γ. Thus, IL-13Rα2 targeting CAR-T cells radiolabeled with 89Zr-oxine retain critical product attributes and suggest 89Zr-oxine radiolabeling of CAR-T cells may facilitate biodistribution and tissue trafficking studies in vivo using PET.


Subject(s)
Immunotherapy, Adoptive , Radioisotopes , T-Lymphocytes , Zirconium , Zirconium/pharmacokinetics , Radioisotopes/pharmacokinetics , Positron-Emission Tomography , Cell Tracking/methods , Single-Chain Antibodies , T-Lymphocytes/cytology , Tissue Distribution , Jurkat Cells , Animals , Mice , Cell Proliferation , Cell Survival
4.
Curr Mol Med ; 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-36999709

ABSTRACT

BACKGROUND: Genetically altered recombinant poxviruses hold great therapeutic promise in animal models of cancer. Poxviruses can induce effective cell-mediated immune responses against tumor-associated antigens. Preventive and therapeutic vaccination with a DNA vaccine expressing IL-13Rα2 can mediate partial regression of established tumors in vivo, indicating that host immune responses against IL-13Rα2 need further augmentation. OBJECTIVE: The aim of the study is developing a recombinant modified vaccinia Ankara (MVA) expressing IL-13RΑ2 (rMVA-IL13RΑ2) virus and study in vitro infectivity and efficacy against IL-13Rα2 positive cell lines. METHODS: We constructed a recombinant MVA expressing IL-13Rα2 and a green fluorescent protein (GFP) reporter gene. Purified virus titration by infection of target cells and immunostaining using anti-vaccinia and anti-IL-13Rα2 antibodies was used to confirm the identity and purity of the rMVA-IL13Rα2. RESULTS: Western Blot analysis confirmed the presence of IL-13Rα2 protein (~52 kDa). Flow cytometric analysis of IL-13Rα2 negative T98G glioma cells when infected with rMVA-IL13Rα2 virus demonstrated cell-surface expression of IL-13Rα2, indicating the infectivity of the recombinant virus. Incubation of T98G-IL13α2 cells with varying concentrations (0.1-100 ng/ml) of interleukin-13 fused to truncated Pseudomonas exotoxin (IL13-PE) resulted in depletion of GFP+ fluorescence in T98G-IL13Rα2 cells. IL13-PE (10-1000 ng/ml) at higher concentrations also inhibited the protein synthesis in T98G-IL13Rα2 cells compared to cells infected with the control pLW44-MVA virus. IL13-PE treatment of rMVA-IL13Rα2 infected chicken embryonic fibroblast and DF-1 cell line reduced virus titer compared to untreated cells. CONCLUSION: rMVA-IL13Rα2 virus can successfully infect mammalian cells to express IL-13Rα2 in a biologically active form on the surface of infected cells. To evaluate the efficacy of rMVA-IL13Rα2, immunization studies are planned in murine tumor models.

5.
Res Sq ; 2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36711796

ABSTRACT

Background Chimeric antigen receptor (CAR) T cell therapy is an exciting cell-based cancer immunotherapy. Unfortunately, CAR-T cell therapy is associated with serious toxicities such as cytokine release syndrome (CRS) and neurotoxicity. The mechanism of these serious adverse events (SAEs) and how homing, distribution and retention of CAR-T cells contribute to toxicities is not fully understood. Methods To determine if radiolabelling of CAR-T cells could support positron emission tomography (PET)-based biodistribution studies, we labeled IL-13Rα2 targeting scFv-IL-13Rα2-CAR-T cells (CAR-T cells) with 89 Zirconium-oxine ( 89 Zr-oxine), and characterized and compared their product attributes with non-labeled CAR-T cells. The 89 Zr-oxine labeling conditions were optimized for incubation time, temperature, and use of serum for labeling. In addition, product attributes of radiolabeled CAR-T cells were studied to assess their overall quality including cell viability, proliferation, phenotype markers of T-cell activation and exhaustion, cytolytic activity and release of interferon-γ upon co-culture with IL-13Rα2 expressing glioma cells. Results We observed that radiolabeling of CAR-T cells with 89 Zr-oxine is quick, efficient, and radioactivity is retained in the cells for at least 8 days with minimal loss. Also, viability of radiolabeled CAR-T cells was similar to that of unlabeled cells as determined by TUNEL assay and caspase 3/7 enzyme activity assay. Moreover, there were no significant changes in T cell activation (CD24, CD44, CD69 and IFN-γ) or T cell exhaustion(PD-1, LAG-3 and TIM3) markers expression between radiolabeled and unlabeled CAR-T cells. In chemotaxis assays, migratory capability of radiolabeled CAR-T cells to IL-13Rα2Fc was similar to that of non-labeled cells. Conclusions Importantly, radiolabeling has minimal impact on biological product attributes including potency of CAR-T cells towards IL-13Rα2 positive tumor cells but not IL-13Rα2 negative cells as measured by cytolytic activity and release of IFN-γ. Thus, IL-13Rα2 targeting CAR-T cells radiolabeled with 89 Zr-oxine retain critical product attributes and suggest 89 Zr-oxine radiolabeling of CAR-T cells may facilitate biodistribution and tissue trafficking studies in vivo using PET.

6.
Front Immunol ; 13: 878365, 2022.
Article in English | MEDLINE | ID: mdl-35464460

ABSTRACT

Interleukin-13 receptor subunit alpha-2 (IL-13Rα2, CD213A), a high-affinity membrane receptor of the anti-inflammatory Th2 cytokine IL-13, is overexpressed in a variety of solid tumors and is correlated with poor prognosis in glioblastoma, colorectal cancer, adrenocortical carcinoma, pancreatic cancer, and breast cancer. While initially hypothesized as a decoy receptor for IL-13-mediated signaling, recent evidence demonstrates IL-13 can signal through IL-13Rα2 in human cells. In addition, expression of IL-13Rα2 and IL-13Rα2-mediated signaling has been shown to promote tumor proliferation, cell survival, tumor progression, invasion, and metastasis. Given its differential expression in tumor versus normal tissue, IL-13Rα2 is an attractive immunotherapy target, as both a targetable receptor and an immunogenic antigen. Multiple promising strategies, including immunotoxins, cancer vaccines, and chimeric antigen receptor (CAR) T cells, have been developed to target IL-13Rα2. In this mini-review, we discuss recent developments surrounding IL-13Rα2-targeted therapies in pre-clinical and clinical study, including potential strategies to improve IL-13Rα2-directed cancer treatment efficacy.


Subject(s)
Glioblastoma , Interleukin-13 Receptor alpha2 Subunit , Pancreatic Neoplasms , Glioblastoma/pathology , Humans , Immunotherapy , Interleukin-13/metabolism , Interleukin-13 Receptor alpha2 Subunit/metabolism , Pancreatic Neoplasms/pathology
7.
Diagnostics (Basel) ; 11(7)2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34201539

ABSTRACT

IL-13Rα2 is a high-affinity binding protein for its ligand IL-13 and a cancer-testis antigen as it is expressed in the testis. IL-13Rα2 is highly expressed in various cancers, including pancreatic cancer, and consists of three domains: extracellular, transmembrane, and cytoplasmic. The extracellular domain binds to the ligand to form a biologically active complex, which initiates signaling through AP-1 and other pathways. IL-13Rα2 is also expressed in diseased cells such as fibroblasts that are involved in various inflammatory diseases, including cancer. We have reported that IL-13Rα2 is a prognostic biomarker for malignant glioma, adrenocortical cancer, and pancreatic cancer. In pancreatic cancer, a small sample of tissue could be examined for the expression of IL-13Rα2 by using the endoscopic ultrasound-fine needle aspiration technique (EUS-FNA). In addition, a peptide-based targeted approach using Pep-1L peptide could be used to study the biodistribution and whole-body cancer imaging for the screening of pancreatic cancer in suspected subjects.

8.
Cancers (Basel) ; 12(5)2020 May 20.
Article in English | MEDLINE | ID: mdl-32443847

ABSTRACT

Perineural invasion (PNI) is one of the major pathological characteristics of pancreatic ductal adeno-carcinoma (PDAC), which is mediated by invading cancer cells into nerve cells. Herein, we identify the overexpression of Interleukin-13 Receptor alpha2 (IL-13Rα2) in the PNI from 236 PDAC samples by studying its expression at the protein levels by immunohistochemistry (IHC) and the RNA level by in situ hybridization (ISH). We observe that ≥75% samples overexpressed IL-13Rα2 by IHC and ISH in grade 2 and 3 tumors, while ≥64% stage II and III tumors overexpressed IL-13Rα2 (≥2+). Interestingly, ≥36 % peripancreatic neural plexus (PL) and ≥70% nerve endings (Ne) among PNI in PDAC samples showed higher levels of IL-13Rα2 (≥2+). IL-13Rα2 +ve PL and Ne subjects survived significantly less than IL-13Rα2 -ve subjects, suggesting that IL-13Rα2 may have a unique role as a biomarker of PNI-aggressiveness. Importantly, IL-13Rα2 may be a therapeutic target for intervention, which might not only prolong patient survival but also help alleviate pain attributed to perineural invasion. Our study uncovers a novel role of IL-13Rα2 in PNI as a key factor of the disease severity, thus revealing a therapeutically targetable option for PDAC and to facilitate PNI-associated pain management.

9.
PLoS One ; 14(5): e0217131, 2019.
Article in English | MEDLINE | ID: mdl-31120964

ABSTRACT

Pyruvate kinase M2 (PKM2) is an alternatively spliced variant, which mediates the conversion of glucose to lactate in cancer cells under normoxic conditions, known as the Warburg effect. Previously, we demonstrated that PKM2 is one of 97 genes that are overexpressed in non-small-cell lung cancer (NSCLC) cell lines. Herein, we demonstrate a novel role of subcellular PKM2 expression as a biomarker of therapeutic response after targeting this gene by shRNA or small molecule inhibitor (SMI) of PKM2 enzyme activity in vitro and in vivo. We examined two established lung cancer cell lines, nine patients derived NSCLC and three normal lung fibroblast cell lines for PKM2 mRNA, protein and enzyme activity by RT-qPCR, immunocytochemistry (ICC), and Western blot analysis. All eleven NSCLC cell lines showed upregulated PKM2 enzymatic activity and protein expression mainly in their cytoplasm. Targeting PKM2 by shRNA or SMI, NSCLC cells showed significantly reduced mRNA, enzyme activity, cell viability, and colony formation, which also downregulated cytosolic PKM2 and upregulated nuclear enzyme activities. Normal lung fibroblast cell lines did not express PKM2, which served as negative controls. PKM2 targeting by SMI slowed tumor growth while gene-silencing significantly reduced growth of human NSCLC xenografts. Tumor sections from responding mice showed >70% reduction in cytoplasmic PKM2 with low or undetectable nuclear staining by immunohistochemistry (IHC). In sharp contrast, non-responding tumors showed a >38% increase in PKM2 nuclear staining with low or undetectable cytoplasmic staining. In conclusion, these results confirmed PKM2 as a target for cancer therapy and an unique function of subcellular PKM2, which may characterize therapeutic response to anti-PKM2 therapy in NSCLC.


Subject(s)
Antibodies, Monoclonal/pharmacology , Carcinoma, Non-Small-Cell Lung/prevention & control , Lung Neoplasms/prevention & control , Pyruvate Kinase/antagonists & inhibitors , RNA, Small Interfering/genetics , Animals , Apoptosis , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation , Female , Humans , In Vitro Techniques , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mice, Nude , Protein Transport , Pyruvate Kinase/genetics , Pyruvate Kinase/metabolism , Subcellular Fractions , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
10.
J Transl Med ; 16(1): 369, 2018 12 20.
Article in English | MEDLINE | ID: mdl-30572904

ABSTRACT

BACKGROUND: Previously, we have demonstrated that Interleukin 13 receptor alpha 2 (IL-13Rα2) is overexpressed in approximate 78% Glioblastoma multiforme (GBM) samples. We have also demonstrated that IL-13Rα2 can serve as a target for cancer immunotherapy in several pre-clinical and clinical studies. However, the significance of overexpression of IL-13Rα2 in GBM and astrocytoma and signaling through these receptors is not known. IL-13 can signal through IL-13R via JAK/STAT and AP-1 pathways in certain cell lines including some tumor cell lines. Herein, we have investigated a role of IL-13/IL-13Rα2 axis in signaling through AP-1 transcription factors in human glioma samples in situ. METHODS: We examined the activation of AP-1 family of transcription factors (c-Jun, Fra-1, Jun-D, c-Fos, and Jun-B) after treating U251, A172 (IL-13Rα2 +ve) and T98G (IL-13Rα2 -ve) glioma cell lines with IL-13 by RT-qPCR, and immunocytochemistry (ICC). We also performed colorimetric ELISA based assay to determine AP-1 transcription factor activation in glioma cell lines. Furthermore, we examined the expression of AP-1 transcription factors in situ in GBM and astrocytoma specimens by multiplex-immunohistochemistry (IHC). Student t test and ANOVA were used for statistical analysis of the results. RESULTS: We have demonstrated up-regulation of two AP-1 transcription factors (c-Jun and Fra-1) at mRNA and protein levels upon treatment with IL-13 in IL-13Rα2 positive but not in IL-13Rα2 negative glioma cell lines. Both transcription factors were also overexpressed in patient derived GBM specimens, however, in contrast to GBM cell lines, c-Fos is also overexpressed in patient derived specimens. Astrocytoma specimens showed lesser extent of immunostaining for IL-13Rα2 and three AP-1 factors compared to GBM specimens. By transcription factor activation assay, we demonstrated that AP-1 transcription factors (C-Jun and Fra-1) were activated upon treatment of IL-13Rα2 + GBM cell lines but not IL-13Rα2 - GBM cell line with IL-13. Our results demonstrate functional activity of AP-1 transcription factor in GBM cell lines in response to IL-13. CONCLUSIONS: These results indicate that IL-13/IL-13Rα2 axis can mediate signal transduction in situ via AP-1 pathway in GBM and astrocytoma and may serve as a new target for GBM immunotherapy.


Subject(s)
Glioblastoma/metabolism , Interleukin-13 Receptor alpha2 Subunit/metabolism , Interleukin-13/metabolism , Signal Transduction , Transcription Factor AP-1/metabolism , Adult , Aged , Astrocytoma/pathology , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Male , Middle Aged , Models, Biological , RNA, Messenger/genetics , RNA, Messenger/metabolism
11.
Discov Med ; 20(111): 273-84, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26645899

ABSTRACT

Thyroid cancer is a rapidly increasing endocrine cancer. Since interleukin-4 receptor (IL-4R) is overexpressed in human solid cancer, we examined expression of IL-4R in 50 cases of anaplastic thyroid cancer (ATC), 37 well-differentiated papillary cancer (WDPC), 35 well-differentiated follicular cancer of thyroid (WDFC), and 37 normal thyroid specimens by immunohistochemistry (IHC) and in-situ hybridization (ISH) techniques. We demonstrated that IL-4Rα was overexpressed in 36/50 (72%) ATC, 20/35 (57%) WDFC, and 11/37 (30%) WDPC tumors. Other two subunits of IL-4R, interleukin-13 receptor α1 (IL-13Rα1) and interleukin-2 receptor gamma (IL-2RγC), were either weakly expressed or absent. As ATC is a highly aggressive cancer with higher incidence of IL-4Rα expression, we characterized IL-4R in 3 ATC cell lines. RT-qPCR and IFA results showed that IL-4Rα is overexpressed while IL-13Rα1 is weakly expressed. Control human umbilical vein endothelial cell line (HUVEC) showed weak expression of IL-4Rα. Binding and competition studies with 125I-IL-4 in ATC cell lines demonstrated that IL-4 specifically bound to IL-4Rα on cell surface. ATC cell lines were highly sensitive to a chimeric fusion cytotoxin consisting of circularly permuted IL-4 and truncated Pseudomonas exotoxin (IL-4-PE), which killed them in a concentration dependent manner. IL-4-PE also blocked colony formation of ATC cell lines in clonogenic assays. IL-4-PE mediated a significant antitumor activity in mouse models of ATC. Intratumoral administration of IL-4-PE caused significant regression of established tumors in a dose dependent manner and increased the overall survival without any visible toxicity. Thus, IL-4Rα in ATC may represent a novel therapeutic target and IL-4-PE may serve as an investigational therapeutic option for ATC.


Subject(s)
ADP Ribose Transferases/pharmacology , Bacterial Toxins/pharmacology , Drug Delivery Systems/methods , Exotoxins/pharmacology , Interleukin-4 Receptor alpha Subunit/agonists , Interleukin-4/pharmacology , Neoplasm Proteins/agonists , Thyroid Neoplasms/drug therapy , Virulence Factors/pharmacology , Animals , Cell Line, Tumor , Female , Humans , Interleukin-4 Receptor alpha Subunit/genetics , Interleukin-4 Receptor alpha Subunit/metabolism , Male , Mice , Mice, Nude , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Recombinant Fusion Proteins/pharmacology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/pathology , Xenograft Model Antitumor Assays , Pseudomonas aeruginosa Exotoxin A
12.
Cytokine ; 75(1): 79-88, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26088753

ABSTRACT

The Th2 cytokines, interleukin (IL)-4 and -13, are structurally and functionally related. They regulate immune responses and the immune microenvironment, not only under normal physiological conditions, but also in cancer. Both cytokines bind to their high-affinity receptors and form various configurations of receptor subtypes. We and others have reported that IL-4 and IL-13 bind to IL-4Rα and IL-13Rα1 chains, forming functional receptors in cancer cells. IL-13 also binds with high affinity to a private chain IL-13Rα2. After forming ligand-receptor complexes, both cytokines initiate signal transduction and mediate biological effects, such as tumor proliferation, cell survival, cell adhesion and metastasis. In certain cancers, the presence of these cytokine receptors may serve as biomarkers of cancer aggressiveness. In a series of studies, we reported that overexpression of IL-4 and IL-13 receptors on cancer cells provides targets for therapeutic agents for cancer therapy. In addition, both of these cytokines and their receptors have been shown to play important roles in modulating the immune system for tumor growth. IL-4, IL-13 and their receptors seem to play a role in cancer stem cells and provide unique targets to eradicate these cells. In this review article, we summarize some of the important attributes of IL-4 and IL-13 receptors in cancer biology and discuss pre-clinical and clinical studies pertaining to recombinant immunotoxins designed to target these receptors.


Subject(s)
Antineoplastic Agents/therapeutic use , Gene Expression Regulation, Neoplastic , Interleukin-4 Receptor alpha Subunit/metabolism , Neoplasms/metabolism , Receptors, Interleukin-13/metabolism , Animals , Antibodies, Monoclonal/immunology , Antigens/immunology , Biomarkers, Tumor/metabolism , Cell Adhesion , Cell Proliferation , Cell Survival , Disease Models, Animal , Doxorubicin/analogs & derivatives , Doxorubicin/chemistry , Humans , Immunotherapy/methods , Immunotoxins/chemistry , Interleukin-13 Receptor alpha1 Subunit , Interleukin-13 Receptor alpha2 Subunit/metabolism , Mice , Neoplasm Metastasis , Polyethylene Glycols/chemistry
13.
Cancer Med ; 4(7): 1060-8, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25767039

ABSTRACT

Adrenocortical carcinoma (ACC) is a rare but lethal malignancy without effective current therapy for metastatic disease. IL-13-PE is a recombinant cytotoxin consisting of human interleukin-13 (IL-13) and a truncated form of Pseudomonas exotoxin A (PE). The main objectives of this Phase I dose-escalation trial were to assess the maximum-tolerated dose (MTD), safety, and pharmacokinetics (PK) of IL-13-PE in patients with metastatic ACC. Eligible patients had confirmed IL-13 receptor alpha 2 (IL-13Rα2) expressions in their tumors. IL-13-PE at dose of 1-2 µg/kg was administered intravenously (IV) on day 1, 3, and 5 in a 4-week cycle. Six patients received 1 µg/kg and two patients received 2 µg/kg of IL-13-PE. Dose-limiting toxicity was observed at 2 µg/kg, at which patients exhibited thrombocytopenia and renal insufficiency without requiring dialysis. PK analysis demonstrated that at MTD, the mean maximum serum concentration (Cmax ) of IL-13-PE was 21.0 ng/mL, and the terminal half-life of IL-13-PE was 30-39 min. Two (25%) of the eight patients had baseline neutralizing antibodies against PE. Three (75%) of the remaining four tested patients developed neutralizing antibodies against IL-13-PE within 14-28 days of initial treatment. Of the five patients treated at MTD and assessed for response, one patient had stable disease for 5.5 months before disease progression; the others progressed within 1-2 months. In conclusion, systemic IV administration of IL-13-PE is safe at 1 µg/kg. All tested patients developed high levels of neutralizing antibodies during IL-13-PE treatment. Use of strategies for immunodepletion before IL-13-PE treatment should be considered in future trials.


Subject(s)
ADP Ribose Transferases , Adrenal Cortex Neoplasms/drug therapy , Adrenal Cortex Neoplasms/pathology , Adrenocortical Carcinoma/drug therapy , Adrenocortical Carcinoma/pathology , Antineoplastic Agents/administration & dosage , Bacterial Toxins , Exotoxins , Interleukin-13 , Recombinant Fusion Proteins/administration & dosage , Virulence Factors , Adolescent , Adrenal Cortex Neoplasms/therapy , Adrenocortical Carcinoma/therapy , Adult , Aged , Antibodies, Neutralizing/blood , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacokinetics , Female , Humans , Infusions, Intravenous , Male , Maximum Tolerated Dose , Middle Aged , Neoplasm Metastasis , Recombinant Fusion Proteins/adverse effects , Recombinant Fusion Proteins/pharmacokinetics , Retreatment , Treatment Outcome , Young Adult , Pseudomonas aeruginosa Exotoxin A
14.
Urol Oncol ; 33(3): 133-6, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25441459

ABSTRACT

In the United States, cancer vaccines and immunotherapies, including cell and gene therapies and peptides and proteins used as therapeutic vaccines, are regulated by the Food and Drug Administration's Center for Biologics Evaluation and Research in the Office of Cellular, Tissue, and Gene Therapies (OCTGT). Center for Biologics Evaluation and Research has licensed two immunotherapy products for urologic indications: bacillus Calmette-Guérin for superficial bladder cancer and sipuleucel-T for advanced prostate cancer. OCTGT places a high priority on scientific and regulatory activities that promote the development of safe and effective cancer therapy products. OCTGT has published guidance documents and developed innovative tools that are designed to aid the rapid development of biologic products for patient use. The success of immunotherapeutic products for urologic malignancies stands as an example for ongoing and future therapeutic research and discovery.


Subject(s)
Biological Products/therapeutic use , Immunotherapy/methods , Medical Oncology/methods , Prostatic Neoplasms/therapy , Clinical Trials as Topic , Genetic Therapy , Humans , Male , Tissue Extracts/therapeutic use , United States , United States Food and Drug Administration , Urinary Bladder Neoplasms/therapy
15.
Cancer Med ; 3(6): 1615-28, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25208941

ABSTRACT

Previously, we have demonstrated that interleukin-4 receptor α (IL-4Rα) is overexpressed on a variety of human cancers and can serve as target for IL-4 immunotoxin comprised of IL-4 and a mutated Pseudomonas exotoxin. However, its expression and association with grade and clinical stage of bladder cancer has not been studied. IL-4Rα expression was examined in human bladder cancer cell lines, mouse xenografts, and biopsy specimens at mRNA and protein levels by real-time RT-PCR and IHC/ISH techniques. We also examined the effect of IL-4 on proliferation and invasion of bladder carcinoma cell lines. For tissue microarray (TMA) results, we analyzed the precision data using exact binomial proportion with exact two-sided P-values. We used Cochran-Armitage Statistics with exact two-sided P-values to examine the trend analysis of IL-4Rα over grade or stage of the bladder cancer specimens. The influence of age and gender covariates was also analyzed using multiple logistic regression models. IL-4Rα is overexpressed in five bladder cancer cell lines, while normal bladder and human umbilical vein cell lines (HUVEC) expressed at low levels. Two other chains of IL-4 receptor complex, IL-2RγC and IL-13Rα1, were absent or weakly expressed. IL-4 modestly inhibited the cell proliferation, but enhanced cell invasion of bladder cancer cell lines in a concentration-dependent manner. Bladder cancer xenografts in immunodeficient mice also maintained IL-4Rα overexpression in vivo. Analysis of tumor biopsy specimens in TMAs revealed significantly higher IL-4Rα immunostaining (≥ 2+) in Grade 2 (85%) and Grade 3 (97%) compared to Grade 1 tumors (0%) (P ≤ 0.0001). Similarly, 9% stage I tumors were positive for IL-4Rα (≥ 2+) compared to 84% stage II (P ≤ 0.0001) and 100% stages III-IV tumors (P ≤ 0.0001). IL-13Rα1 was also expressed in tumor tissues but at low levels and it did not show any correlation with the grade and stage of disease. However, the IL-2RγC was not expressed. Ten normal bladder specimens demonstrated ≤ 1+ staining for IL-4Rα and IL-13Rα1 and no staining for IL-2RγC. These results demonstrate that IL-4Rα is overexpressed in human bladder cancer, which correlates with advanced grade and stage of the disease. Thus, IL-4Rα may be a bladder tumor-associated protein and a prognostic biomarker.


Subject(s)
Interleukin-4 Receptor alpha Subunit/biosynthesis , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology , Adult , Aged , Animals , Cell Line, Tumor , Female , Heterografts , Human Umbilical Vein Endothelial Cells , Humans , Immunohistochemistry , Interleukin-4 Receptor alpha Subunit/genetics , Mice , Mice, Nude , Middle Aged , Neoplasm Grading , Neoplasm Staging , Real-Time Polymerase Chain Reaction , Tissue Array Analysis , Urinary Bladder Neoplasms/genetics
16.
J Nucl Med ; 55(8): 1323-9, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24947060

ABSTRACT

UNLABELLED: Interleukin-13 Pseudomonas exotoxin (IL-13PE), a targeted agent for interleukin-13 receptor α2 (IL-13Rα2)-expressing tumors, has been administered intracranially by convection-enhanced delivery (CED) for glioma therapy in several clinical trials including a randomized phase 3 clinical trial. However, its intracranial distribution was not optimally evaluated. We investigated the intracranial distribution of radiolabeled IL-13PE after CED in a murine model of glioblastoma multiforme. METHODS: IL-13PE was radiolabeled with Na(125)I and evaluated for its activity in vitro in receptor-positive U251 or -negative T98G human glioma cell lines. Gliomas were grown in nude mice after intracranial implantation with U251 cells, and (125)I-IL-13PE was stereotactically administered by bolus or CED for 3 d, followed by micro-SPECT/CT imaging. SPECT images were evaluated quantitatively and compared with histology and autoradiography results. RESULTS: The radioiodination technique resulted in a specific and biologically active (125)I-IL-13PE, which bound and was cytotoxic to IL-13Rα2-positive but not to IL-13Rα2-negative tumor cells. Both the binding and the cytotoxic activities were blocked by a 100-fold excess of IL-13, which indicated the specificity of binding and cytotoxicity. SPECT/CT imaging revealed retention of (125)I-IL-13PE administered by CED in U251 tumors and showed significantly higher volumes of distribution and maintained detectable drug levels for a longer period of time than the bolus route. These results were confirmed by autoradiography. CONCLUSION: IL-13PE can be radioiodinated without the loss of specificity, binding, or cytotoxic activity. Intracranial CED administration produces a higher volume of distribution for a longer period of time than the bolus route. Thus, CED of IL-13PE is superior to bolus injection in delivering the drug to the entire tumor.


Subject(s)
Glioma/diagnostic imaging , Immunotoxins/metabolism , Receptors, Interleukin-13/metabolism , Tomography, Emission-Computed, Single-Photon , Tomography, X-Ray Computed , Animals , Brain/diagnostic imaging , Brain/metabolism , Cell Line, Tumor , Disease Models, Animal , Glioma/metabolism , Glioma/pathology , Humans , Injections , Isotope Labeling , Mice , Pseudomonas , Tissue Distribution
17.
Biotechnol Prog ; 28(5): 1138-51, 2012.
Article in English | MEDLINE | ID: mdl-22848039

ABSTRACT

Scale-down of bioreactors is currently done based on matching one or more measurable parameters such as k(L) a and P/V, which could result in insufficient process comparability. Currently, there is a lack of genomic translational studies in cell culture scale-down, which could help delineate measurable cellular attributes for improved scale-down. In this study, we scaled-down from a typical bench-scale 5-L bioreactor to a novel high-throughput 35-mL minibioreactor based on matching oxygen transfer rate, which resulted in cell growth and product-related discrepancies using Sp2/0 cells. Performing DNA microarrays on time-course samples from both systems, we identified ∼200 differentially expressed transcripts, presumably because of bioreactor aeration and mixing differences with scale-down. Evaluating these transcripts for bioreactor-relevant cellular functions such as oxidative stress response and DNA damage response, we chose 18 sentinel genes based on their degree of difference and functionality, which we further verified by quantitative real-time polymerase chain reaction (qRT-PCR). Tracking the differential expression of Sod1, Apex1, and Odc1 genes, we were able to correlate sparging-related damage and poor mixing, as possible causes for physiological changes such as prolonged culture in minibioreactors. Additionally, to verify our sentinel gene findings, we performed follow-up improved scale-down studies based on gene analysis and measured transcriptomic changes. As a result, qRT-PCR-based genomic profiles and cell growth profiles showed better convergence between the improved minibioreactor conditions and the model 5-L bioreactor. Our results broadly show that based on the knowledge from transcriptomic changes of sentinel gene profiles, it is possible to improve bioreactor scale-down for more comparable processes.


Subject(s)
Proteins/genetics , Transcriptome , Animals , Bioreactors , Cell Culture Techniques/instrumentation , Cell Line, Tumor , Cells/metabolism , Gene Expression Regulation , Mice , Oxygen/analysis , Oxygen/metabolism , Proteins/metabolism
18.
Biotechnol Prog ; 28(5): 1126-37, 2012.
Article in English | MEDLINE | ID: mdl-22837152

ABSTRACT

Currently, there is a gap in the knowledge of the culture responses to controlled bioreactor environment during the course of batch cell culture from early exponential phase to stationary-phase. If available, such information could be used to designate gene transcripts for predicting cell status and as a quality predictor for a controlled bioreactor. In this study, we used oligonucleotide microarrays to obtain baseline gene expression profiles during the time-course of a hybridoma batch cell culture in a 5 L bench-scale bioreactor. Gene expression changes that were up or down modulated from early-to-late in batch culture, as well as invariant gene profiles with significant expression were identified using microarray. Typical cellular functions that seemed to be correlated with transcriptomics were oxidative stress response, DNA damage response, apoptosis, and cellular metabolism. As confirmatory evidence, microarray findings were verified with a more rigorous semiquantitative gene-specific Reverse transcriptase-polymerase chain reaction (RT-PCR). The results of this study suggest that under predefined bioreactor culture conditions, significant gene changes from lag to log to stationary phase could be identified, which could then be used to track the culture state.


Subject(s)
Gene Expression Profiling , Genomics , Hybridomas/metabolism , Proteins/genetics , Animals , Batch Cell Culture Techniques/instrumentation , Bioreactors , Mice , Oligonucleotide Array Sequence Analysis , Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction
19.
PLoS One ; 7(4): e34437, 2012.
Article in English | MEDLINE | ID: mdl-22532830

ABSTRACT

BACKGROUND: Cysteamine, an anti-oxidant aminothiol, is the treatment of choice for nephropathic cystinosis, a rare lysosomal storage disease. Cysteamine is a chemo-sensitization and radioprotection agent and its antitumor effects have been investigated in various tumor cell lines and chemical induced carcinogenesis. Here, we investigated whether cysteamine has anti-tumor and anti-metastatic effects in transplantable human pancreatic cancer, an aggressive metastatic disease. METHODOLOGY/PRINCIPAL FINDINGS: Cysteamine's anti-invasion effects were studied by matrigel invasion and cell migration assays in 10 pancreatic cancer cell lines. To study mechanism of action, we examined cell viability and matrix metalloproteinases (MMPs) activity in the cysteamine-treated cells. We also examined cysteamine's anti-metastasis effect in two orthotopic murine models of human pancreatic cancer by measuring peritoneal metastasis and survival of animals. Cysteamine inhibited both migration and invasion of all ten pancreatic cancer cell lines at concentrations (<25 mM) that caused no toxicity to cells. It significantly decreased MMPs activity (IC(50) 38-460 µM) and zymographic gelatinase activity in a dose dependent manner in vitro and in vivo; while mRNA and protein levels of MMP-9, MMP-12 and MMP-14 were slightly increased using the highest cysteamine concentration. In vivo, cysteamine significantly decreased metastasis in two established pancreatic tumor models, although it did not affect the size of primary tumors. Additionally, cysteamine prolonged survival of mice in a dose-dependent manner without causing any toxicity. Similar to the in vitro results, MMP activity was significantly decreased in animal tumors treated with cysteamine. Cysteamine had no clinical or preclinical adverse effects in the host even at the highest dose. CONCLUSIONS/SIGNIFICANCE: Our results suggest that cysteamine, an agent with a proven safety profile, may be useful for inhibition of metastasis and prolonging the survival of a host with pancreatic cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Movement/drug effects , Cysteamine/pharmacology , Enzyme Inhibitors/pharmacology , Matrix Metalloproteinase Inhibitors , Pancreatic Neoplasms/drug therapy , Animals , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Survival/drug effects , Cysteamine/therapeutic use , Disease Models, Animal , Enzyme Inhibitors/therapeutic use , Matrix Metalloproteinases/metabolism , Mice , Neoplasm Metastasis , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Tumor Cells, Cultured
20.
Int J Cancer ; 131(2): 344-56, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-21858811

ABSTRACT

Previously, we have demonstrated that a variety of human cancers including the ovarian cancer express IL-13Rα2, a high affinity receptor for IL-13. Herein, we have examined if IL-13 regulates invasion and metastasis of ovarian cancer through IL-13Rα2 in vitro and in vivo in animal models of human ovarian cancer. We tested cell invasion and protease activity in IL-13Rα2-overexpressing and IL-13Rα2-negative ovarian tumor cell lines. IL-13 treatment significantly augmented both cell invasion and enzyme activities in only IL-13Rα2-positive cells but not in IL-13Rα2-negative cells in vitro. Mechanistically, IL-13 enhanced ERK1/2, AP-1 and MMP activities only in IL-13Rα2-positive cells but not in IL-13Rα2-negative cells. In contrast, other signaling pathways such as IRS1/2, PI3K and AKT do not seem to be involved in IL-13 induced signaling in ovarian cancer cell lines. Highly specific inhibitors for MMP and AP-1 efficiently inhibited both invasion and protease activities without impacting the basal level invasion and protease activities in vitro. In orthotopic animal model of human ovarian cancer, IL-13Rα2-positive tumors metastasized to lymph nodes and peritoneum earlier than IL-13Rα2-negative tumors. Interestingly, the IL-13Rα2-positive tumor bearing mice died earlier than mice with IL-13Rα2-negative tumor. Intraperitoneal injection of IL-13 further shortened survival of IL-13Rα2-positive tumor bearing mice compared to IL-13Rα2-negative tumor mice. IL-13Rα2-positive tumors and lymph node metastasis expressed higher levels of MMPs and higher ERK1/2 activation compared to IL-13Rα2-negative tumors. Taken together, IL-13Rα2 is involved in cancer metastasis through activation of ERK/AP-1 and that targeting IL-13Rα2 might not only directly kill primary tumors but also prevent cancer metastasis.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/metabolism , Interleukin-13 Receptor alpha2 Subunit/metabolism , Interleukin-13/metabolism , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Transcription Factor AP-1/metabolism , Animals , Cell Line, Tumor , Female , Gene Knockdown Techniques , Humans , Matrix Metalloproteinase Inhibitors , Matrix Metalloproteinases/metabolism , Mice , Mice, Nude , Neoplasm Invasiveness , Neoplasm Metastasis , Signal Transduction , Transcription Factor AP-1/antagonists & inhibitors , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL