Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Hered ; 114(1): 81-87, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36222891

ABSTRACT

We present the reference genome of the Vernal Pool Fairy Shrimp Branchinecta lynchi. This branchiopod crustacean is endemic to California's freshwater ephemeral ponds. It faces enormous habitat loss and fragmentation as urbanization and agriculture have fundamentally changed the vernal pool landscape over the past 3 centuries. The assembled genome consists of 22 chromosome-length scaffolds that account for 96.85% of the total sequence. One hundred and ninety-five unscaffolded contigs comprise the rest of the genome's 575.6 Mb length. The genome is substantially complete with a BUSCO score of 90.0%. There is no immediately identifiable sex chromosome, typical for this class of organism. This new resource will permit researchers to better understand the adaptive capacity of this imperiled species, as well as answer lingering questions about anostracan physiology, sex determination, and development.


Subject(s)
Anostraca , Crustacea , Animals , Crustacea/genetics , Genome , Ecosystem , Fresh Water
2.
J Hered ; 114(1): 74-80, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36223244

ABSTRACT

We present the novel reference genome of the Versatile Fairy Shrimp, Branchinecta lindahli. The Versatile Fairy Shrimp is a freshwater anostracan crustacean found across the western United States from Iowa to Oregon and from Alberta to Baja California. It is an ephemeral pool specialist, living in prairie potholes, irrigation ditches, tire treads, vernal pools, and other temporary freshwater wetlands. Anostracan fairy shrimp are facing global declines with 3 species in California on the Endangered Species list. This species was included in the California Conservation Genomics Project to provide an easily accessible reference genome, and to provide whole-genome resources for a generalist species, which may lead to new insights into Anostracan resiliency in the face of climate change. The final gapped genome comprises 15 chromosome-length scaffolds covering 98.63% of the 384.8 Mb sequence length, and an additional 55 unscaffolded contigs.


Subject(s)
Anostraca , Endangered Species , Animals , United States , Anostraca/genetics , Mexico , Wetlands , Chromosomes/genetics
3.
J Hered ; 113(6): 706-711, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36082700

ABSTRACT

In this paper, we report on the scaffold-level assembled genome for the federally endangered, California endemic crustacean Lepidurus packardi (the Vernal Pool Tadpole Shrimp). L. packardi is a key food source for other conserved California species including the California Tiger Salamander Ambystoma californiense. It faces significant habitat loss and fragmentation as vernal pools are threatened by urbanization, agricultural conversion, and climate change. This resource represents the first scaffold-level genome of any Lepidurus species. The assembled genome spans 108.6 Mbps, with 6 chromosome-length scaffolds comprising 71% of total genomic length and 444 total contigs. The BUSCO score for this genome is 97.3%, suggesting a high level of completeness. We produced a predicted gene set for this species trained on the Daphnia magna set of genes and predicted 17,650 genes. These tools can aid researchers in understanding the evolution and adaptive potential of alternative reproductive modes within this species.


Subject(s)
Ambystoma , Crustacea , Animals , Crustacea/genetics , Ambystoma/genetics , Ecosystem , Genome , Larva
4.
G3 (Bethesda) ; 12(8)2022 07 29.
Article in English | MEDLINE | ID: mdl-35640553

ABSTRACT

Migration is a complex phenotypic trait with some species containing migratory and nonmigratory individuals. Such life history variation may be attributed in part to plasticity, epigenetics, or genetics. Although considered semianadromous, recent studies using otolith geochemistry have revealed life history variation within the critically endangered Delta Smelt. Broadly categorizable as migratory or freshwater residents, we examined Restriction site Associated DNA sequencing data to test for a relationship between genetic variation and migratory behaviors. As previously shown, we found no evidence for neutral population genetic structure within Delta Smelt; however, we found significant evidence for associations between genetic variants and life history phenotypes. Furthermore, discriminant analysis of principal components, hierarchical clustering, and machine learning resulted in accurate assignment of fish into the freshwater resident or migratory classes based on their genotypes. These results suggest the presence of adaptive genetic variants relating to life history variation within a panmictic population. Mechanisms that may lead to this observation are genotype dependent habitat choice and spatially variable selection, both of which could operate each generation and are not exclusive. Given that the population of cultured Delta Smelt are being used as a refugial population for conservation, as a supply for wild population supplementation, and currently represent the majority of all living individuals of this species, we recommend that the hatchery management strategy consider the frequencies of life history-associated alleles and how to maintain this important aspect of Delta Smelt biological variation while under captive propagation.


Subject(s)
Endangered Species , Osmeriformes , Animals , Fresh Water , Osmeriformes/genetics , Phenotype , Sequence Analysis, DNA
5.
Gigascience ; 10(1)2021 01 13.
Article in English | MEDLINE | ID: mdl-33438730

ABSTRACT

As the scale of biological data generation has increased, the bottleneck of research has shifted from data generation to analysis. Researchers commonly need to build computational workflows that include multiple analytic tools and require incremental development as experimental insights demand tool and parameter modifications. These workflows can produce hundreds to thousands of intermediate files and results that must be integrated for biological insight. Data-centric workflow systems that internally manage computational resources, software, and conditional execution of analysis steps are reshaping the landscape of biological data analysis and empowering researchers to conduct reproducible analyses at scale. Adoption of these tools can facilitate and expedite robust data analysis, but knowledge of these techniques is still lacking. Here, we provide a series of strategies for leveraging workflow systems with structured project, data, and resource management to streamline large-scale biological analysis. We present these practices in the context of high-throughput sequencing data analysis, but the principles are broadly applicable to biologists working beyond this field.


Subject(s)
Computational Biology , Software , Data Analysis , High-Throughput Nucleotide Sequencing , Workflow
6.
Front Genet ; 11: 558762, 2020.
Article in English | MEDLINE | ID: mdl-33193640

ABSTRACT

Among people of European descent, the ability to digest lactose into adulthood arose via strong positive selection of a highly advantageous allele encompassing the lactase gene. Lactose-tolerant and intolerant individuals may have different disease risks due to the shared genetics of their haplotype block. Therefore, the overall objective of the study was to assess the genetic association of the lactase persistence haplotype to disease risk. Using data from the 1000Genomes project, we estimated the size of the lactase persistence haplotype block to be 1.9 Mbp containing up to 9 protein-coding genes and a microRNA. Based on the function of the genes and microRNA, we studied health phenotypes likely to be impacted by the lactase persistence allele: prostate cancer status, cardiovascular disease status, and bone mineral density. We used summary statistics from large genome-wide metanalyses-32,965 bone mineral density, 140,306 prostate cancer and 184,305 coronary artery disease subjects-to evaluate whether the lactase persistence allele was associated with these disease phenotypes. Despite the fact that previous work demonstrated that the lactase persistence haplotype block harbors increased deleterious mutations, these results suggest little effect on the studied disease phenotypes.

7.
PLoS One ; 8(6): e67105, 2013.
Article in English | MEDLINE | ID: mdl-23826204

ABSTRACT

The cat (Felis silvestris catus) shows significant variation in pelage, morphological, and behavioral phenotypes amongst its over 40 domesticated breeds. The majority of the breed specific phenotypic presentations originated through artificial selection, especially on desired novel phenotypic characteristics that arose only a few hundred years ago. Variations in coat texture and color of hair often delineate breeds amongst domestic animals. Although the genetic basis of several feline coat colors and hair lengths are characterized, less is known about the genes influencing variation in coat growth and texture, especially rexoid - curly coated types. Cornish Rex is a cat breed defined by a fixed recessive curly coat trait. Genome-wide analyses for selection (di, Tajima's D and nucleotide diversity) were performed in the Cornish Rex breed and in 11 phenotypically diverse breeds and two random bred populations. Approximately 63K SNPs were used in the analysis that aimed to localize the locus controlling the rexoid hair texture. A region with a strong signature of recent selective sweep was identified in the Cornish Rex breed on chromosome A1, as well as a consensus block of homozygosity that spans approximately 3 Mb. Inspection of the region for candidate genes led to the identification of the lysophosphatidic acid receptor 6 (LPAR6). A 4 bp deletion in exon 5, c.250_253_delTTTG, which induces a premature stop codon in the receptor, was identified via Sanger sequencing. The mutation is fixed in Cornish Rex, absent in all straight haired cats analyzed, and is also segregating in the German Rex breed. LPAR6 encodes a G protein-coupled receptor essential for maintaining the structural integrity of the hair shaft; and has mutations resulting in a wooly hair phenotype in humans.


Subject(s)
Cats/genetics , Hair , Mutation , Receptors, Lysophosphatidic Acid/genetics , Animals , Breeding , Genotyping Techniques , Hair Follicle/ultrastructure , Haplotypes , Homozygote , Phenotype , Polymorphism, Single Nucleotide , Receptors, Purinergic P2/genetics , Species Specificity
8.
Sci Rep ; 3: 2000, 2013.
Article in English | MEDLINE | ID: mdl-23770706

ABSTRACT

One of the salient features of the domestic cat is the aesthetics of its fur. The Selkirk Rex breed is defined by an autosomal dominant woolly rexoid hair (ADWH) abnormality that is characterized by tightly curled hair shafts. A genome-wide case - control association study was conducted using 9 curly coated Selkirk Rex and 29 controls, including straight-coated Selkirk Rex, British Shorthair and Persian, to localize the Selkirk autosomal dominant rexoid locus (SADRE). Although the control cats were from different breed lineages, they share recent breeding histories and were validated as controls by Bayesian clustering, multi-dimensional scaling and genomic inflation. A significant association was found on cat chromosome B4 (Praw = 2.87 × 10(-11)), and a unique haplotype spanning ~600 Kb was found in all the curly coated cats. Direct sequencing of four candidate genes revealed a splice site variant within the KRT71 gene associated with the hair abnormality in Selkirk Rex.


Subject(s)
Keratins, Hair-Specific/genetics , RNA Splicing , Animals , Bayes Theorem , Cats , Genome-Wide Association Study , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...