Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Syst Biol Appl ; 10(1): 11, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38278838

ABSTRACT

Despite recent progress in adoptive T cell therapy for cancer, understanding and predicting the kinetics of infused T cells remains a challenge. Multiple factors can impact the distribution, expansion, and decay or persistence of infused T cells in patients. We have developed a novel quantitative systems pharmacology (QSP) model of TCR-transgenic T cell therapy in patients with solid tumors to describe the kinetics of endogenous T cells and multiple memory subsets of engineered T cells after infusion. These T cells undergo lymphodepletion, proliferation, trafficking, differentiation, and apoptosis in blood, lymph nodes, tumor site, and other peripheral tissues. Using the model, we generated patient-matched digital twins that recapitulate the circulating T cell kinetics reported from a clinical trial of TCR-engineered T cells targeting E7 in patients with metastatic HPV-associated epithelial cancers. Analyses of key parameters influencing cell kinetics and differences among digital twins identify stem cell-like memory T cells (Tscm) cells as an important determinant of both expansion and persistence and suggest that Tscm-related differences contribute significantly to the observed variability in cellular kinetics among patients. We simulated in silico clinical trials using digital twins and predict that Tscm enrichment in the infused product improves persistence of the engineered T cells and could enable administration of a lower dose. Finally, we verified the broader relevance of the QSP model, the digital twins, and findings on the importance of Tscm enrichment by predicting kinetics for two patients with pancreatic cancer treated with KRAS G12D targeting T cell therapy. This work offers insight into the key role of Tscm biology on T cell kinetics and provides a quantitative framework to evaluate cellular kinetics for future efforts in the development and clinical application of TCR-engineered T cell therapies.


Subject(s)
CD4-Positive T-Lymphocytes , Receptors, Antigen, T-Cell , Humans , Receptors, Antigen, T-Cell/genetics
2.
Sci Rep ; 12(1): 20731, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36456599

ABSTRACT

Some persistent infections provide a level of immunity that protects against reinfection with the same pathogen, a process referred to as concomitant immunity. To explore the phenomenon of concomitant immunity during Mycobacterium tuberculosis infection, we utilized HostSim, a previously published virtual host model of the immune response following Mtb infection. By simulating reinfection scenarios and comparing with data from non-human primate studies, we propose a hypothesis that the durability of a concomitant immune response against Mtb is intrinsically tied to levels of tissue resident memory T cells (Trms) during primary infection, with a secondary but important role for circulating Mtb-specific T cells. Further, we compare HostSim reinfection experiments to observational TB studies from the pre-antibiotic era to predict that the upper bound of the lifespan of resident memory T cells in human lung tissue is likely 2-3 years. To the authors' knowledge, this is the first estimate of resident memory T-cell lifespan in humans. Our findings are a first step towards demonstrating the important role of Trms in preventing disease and suggest that the induction of lung Trms is likely critical for vaccine success.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Anti-Bacterial Agents , Reinfection , Thorax
3.
J Theor Biol ; 539: 111042, 2022 04 21.
Article in English | MEDLINE | ID: mdl-35114195

ABSTRACT

Tuberculosis (TB), caused by infection with Mycobacterium tuberculosis (Mtb), is one of the world's deadliest infectious diseases and remains a significant global health burden. TB disease and pathology can present clinically across a spectrum of outcomes, ranging from total sterilization of infection to active disease. Much remains unknown about the biology that drives an individual towards various clinical outcomes as it is challenging to experimentally address specific mechanisms driving clinical outcomes. Furthermore, it is unknown whether numbers of immune cells in the blood accurately reflect ongoing events during infection within human lungs. Herein, we utilize a systems biology approach by developing a whole-host model of the immune response to Mtb across multiple physiologic and time scales. This model, called HostSim, tracks events at the cellular, granuloma, organ, and host scale and represents the first whole-host, multi-scale model of the immune response following Mtb infection. We show that this model can capture various aspects of human and non-human primate TB disease and predict that biomarkers in the blood may only faithfully represent events in the lung at early time points after infection. We posit that HostSim, as a first step toward personalized digital twins in TB research, offers a powerful computational tool that can be used in concert with experimental approaches to understand and predict events about various aspects of TB disease and therapeutics.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Granuloma/pathology , Lung/microbiology , Primates
4.
Math Biosci ; 337: 108593, 2021 07.
Article in English | MEDLINE | ID: mdl-33865847

ABSTRACT

Computational and mathematical models in biology rely heavily on the parameters that characterize them. However, robust estimates for their values are typically elusive and thus a large parameter space becomes necessary for model study, particularly to make translationally impactful predictions. Sampling schemes exploring parameter spaces for models are used for a variety of purposes in systems biology, including model calibration and sensitivity analysis. Typically, random sampling is used; however, when models have a high number of unknown parameters or the models are highly complex, computational cost becomes an important factor. This issue can be reduced through the use of efficient sampling schemes such as Latin hypercube sampling (LHS) and Sobol sequences. In this work, we compare and contrast three sampling schemes - random sampling, LHS, and Sobol sequences - for the purposes of performing both parameter sensitivity analysis and model calibration. In addition, we apply these analyses to different types of computational and mathematical models of varying complexity: a simple ODE model, a complex ODE model, and an agent-based model. In general, the sampling scheme had little effect when used for calibration efforts, but when applied to sensitivity analyses, Sobol sequences exhibited faster convergence. While the observed benefit to convergence is relatively small, Sobol sequences are computationally less expensive to compute than LHS samples and also have the benefit of being deterministic, which allows for better reproducibility of results.


Subject(s)
Models, Biological , Systems Biology , Calibration , Research Design , Systems Biology/methods
5.
Cell Mol Bioeng ; 14(1): 31-47, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33643465

ABSTRACT

INTRODUCTION: Mathematical and computational modeling have a long history of uncovering mechanisms and making predictions for biological systems. However, to create a model that can provide relevant quantitative predictions, models must first be calibrated by recapitulating existing biological datasets from that system. Current calibration approaches may not be appropriate for complex biological models because: 1) many attempt to recapitulate only a single aspect of the experimental data (such as a median trend) or 2) Bayesian techniques require specification of parameter priors and likelihoods to experimental data that cannot always be confidently assigned. A new calibration protocol is needed to calibrate complex models when current approaches fall short. METHODS: Herein, we develop CaliPro, an iterative, model-agnostic calibration protocol that utilizes parameter density estimation to refine parameter space and calibrate to temporal biological datasets. An important aspect of CaliPro is the user-defined pass set definition, which specifies how the model might successfully recapitulate experimental data. We define the appropriate settings to use CaliPro. RESULTS: We illustrate the usefulness of CaliPro through four examples including predator-prey, infectious disease transmission, and immune response models. We show that CaliPro works well for both deterministic, continuous model structures as well as stochastic, discrete models and illustrate that CaliPro can work across diverse calibration goals. CONCLUSIONS: We present CaliPro, a new method for calibrating complex biological models to a range of experimental outcomes. In addition to expediting calibration, CaliPro may be useful in already calibrated parameter spaces to target and isolate specific model behavior for further analysis.

6.
PLoS Comput Biol ; 16(5): e1007280, 2020 05.
Article in English | MEDLINE | ID: mdl-32433646

ABSTRACT

Mycobacterium tuberculosis (Mtb), the causative infectious agent of tuberculosis (TB), kills more individuals per year than any other infectious agent. Granulomas, the hallmark of Mtb infection, are complex structures that form in lungs, composed of immune cells surrounding bacteria, infected cells, and a caseous necrotic core. While granulomas serve to physically contain and immunologically restrain bacteria growth, some granulomas are unable to control Mtb growth, leading to bacteria and infected cells leaving the granuloma and disseminating, either resulting in additional granuloma formation (local or non-local) or spread to airways or lymph nodes. Dissemination is associated with development of active TB. It is challenging to experimentally address specific mechanisms driving dissemination from TB lung granulomas. Herein, we develop a novel hybrid multi-scale computational model, MultiGran, that tracks Mtb infection within multiple granulomas in an entire lung. MultiGran follows cells, cytokines, and bacterial populations within each lung granuloma throughout the course of infection and is calibrated to multiple non-human primate (NHP) cellular, granuloma, and whole-lung datasets. We show that MultiGran can recapitulate patterns of in vivo local and non-local dissemination, predict likelihood of dissemination, and predict a crucial role for multifunctional CD8+ T cells and macrophage dynamics for preventing dissemination.


Subject(s)
Computational Biology/methods , Forecasting/methods , Tuberculosis/pathology , Animals , CD8-Positive T-Lymphocytes/immunology , Computer Simulation , Cytokines/immunology , Granuloma/microbiology , Granuloma, Respiratory Tract/microbiology , Granuloma, Respiratory Tract/physiopathology , Humans , Lung/microbiology , Lymph Nodes/pathology , Macrophages/immunology , Models, Theoretical , Mycobacterium tuberculosis/pathogenicity , Tuberculosis, Pulmonary/microbiology
8.
Front Microbiol ; 9: 1734, 2018.
Article in English | MEDLINE | ID: mdl-30177914

ABSTRACT

Tuberculosis (TB) is the leading cause of death by an infectious agent, and developing an effective vaccine is an important component of the WHO's EndTB Strategy. Non-human primate (NHP) models of vaccination are crucial to TB vaccine development and have informed design of subsequent human trials. However, challenges emerge when translating results from animal models to human applications, and connecting post-vaccination immunological measurements to infection outcomes. The H56:IC31 vaccine is a candidate currently in phase I/IIa trials. H56 is a subunit vaccine that is comprised of 3 mycobacterial antigens: ESAT6, Ag85B, and Rv2660, formulated in IC31 adjuvant. H56, as a boost to Bacillus Calmette-Guérin (BCG, the TB vaccine that is currently used in most countries world-wide) demonstrates improved protection (compared to BCG alone) in mouse and NHP models of TB, and the first human study of H56 reported strong antigen-specific T cell responses to the vaccine. We integrated NHP and human data with mathematical modeling approaches to improve our understanding of NHP and human response to vaccine. We use a mathematical model to describe T-cell priming, proliferation, and differentiation in lymph nodes and blood, and calibrate the model to NHP and human blood data. Using the model, we demonstrate the impact of BCG timing on H56 vaccination response and reveal a general immunogenic response to H56 following BCG prime. Further, we use uncertainty and sensitivity analyses to isolate mechanisms driving differences in vaccination response observed between NHP and human datasets. This study highlights the power of a systems biology approach: integration of multiple modalities to better understand a complex biological system.

9.
Immunol Rev ; 285(1): 147-167, 2018 09.
Article in English | MEDLINE | ID: mdl-30129209

ABSTRACT

Immune responses to pathogens are complex and not well understood in many diseases, and this is especially true for infections by persistent pathogens. One mechanism that allows for long-term control of infection while also preventing an over-zealous inflammatory response from causing extensive tissue damage is for the immune system to balance pro- and anti-inflammatory cells and signals. This balance is dynamic and the immune system responds to cues from both host and pathogen, maintaining a steady state across multiple scales through continuous feedback. Identifying the signals, cells, cytokines, and other immune response factors that mediate this balance over time has been difficult using traditional research strategies. Computational modeling studies based on data from traditional systems can identify how this balance contributes to immunity. Here we provide evidence from both experimental and mathematical/computational studies to support the concept of a dynamic balance operating during persistent and other infection scenarios. We focus mainly on tuberculosis, currently the leading cause of death due to infectious disease in the world, and also provide evidence for other infections. A better understanding of the dynamically balanced immune response can help shape treatment strategies that utilize both drugs and host-directed therapies.


Subject(s)
Computational Biology/methods , Inflammation/immunology , Lung/pathology , Models, Immunological , Mycobacterium tuberculosis/physiology , Tuberculosis/immunology , Animals , Antitubercular Agents/therapeutic use , Feedback, Physiological , Humans , Inflammation/therapy , Lung/drug effects , Models, Theoretical , Signal Transduction , Tuberculosis/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...