Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
Cell Rep Phys Sci ; 5(4): 101892, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38720789

ABSTRACT

Understanding how different networks relate to each other is key for understanding complex systems. We introduce an intuitive yet powerful framework to disentangle different ways in which networks can be (dis)similar and complementary to each other. We decompose the shortest paths between nodes as uniquely contributed by one source network, or redundantly by either, or synergistically by both together. Our approach considers the networks' full topology, providing insights at multiple levels of resolution: from global statistics to individual paths. Our framework is widely applicable across scientific domains, from public transport to brain networks. In humans and 124 other species, we demonstrate the prevalence of unique contributions by long-range white-matter fibers in structural brain networks. Across species, efficient communication also relies on significantly greater synergy between long-range and short-range fibers than expected by chance. Our framework could find applications for designing network systems or evaluating existing ones.

2.
Theory Biosci ; 143(2): 107-122, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38460025

ABSTRACT

We consider the standard neural field equation with an exponential temporal kernel. We analyze the time-independent (static) and time-dependent (dynamic) bifurcations of the equilibrium solution and the emerging spatiotemporal wave patterns. We show that an exponential temporal kernel does not allow static bifurcations such as saddle-node, pitchfork, and in particular, static Turing bifurcations. However, the exponential temporal kernel possesses the important property that it takes into account the finite memory of past activities of neurons, which Green's function does not. Through a dynamic bifurcation analysis, we give explicit bifurcation conditions. Hopf bifurcations lead to temporally non-constant, but spatially constant solutions, but Turing-Hopf bifurcations generate spatially and temporally non-constant solutions, in particular, traveling waves. Bifurcation parameters are the coefficient of the exponential temporal kernel, the transmission speed of neural signals, the time delay rate of synapses, and the ratio of excitatory to inhibitory synaptic weights.


Subject(s)
Models, Neurological , Neurons , Synapses , Neurons/physiology , Synapses/physiology , Algorithms , Synaptic Transmission , Animals , Humans , Computer Simulation , Time Factors , Nerve Net/physiology , Action Potentials/physiology
3.
Proc Natl Acad Sci U S A ; 120(37): e2303332120, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37669393

ABSTRACT

Synchronization phenomena on networks have attracted much attention in studies of neural, social, economic, and biological systems, yet we still lack a systematic understanding of how relative synchronizability relates to underlying network structure. Indeed, this question is of central importance to the key theme of how dynamics on networks relate to their structure more generally. We present an analytic technique to directly measure the relative synchronizability of noise-driven time-series processes on networks, in terms of the directed network structure. We consider both discrete-time autoregressive processes and continuous-time Ornstein-Uhlenbeck dynamics on networks, which can represent linearizations of nonlinear systems. Our technique builds on computation of the network covariance matrix in the space orthogonal to the synchronized state, enabling it to be more general than previous work in not requiring either symmetric (undirected) or diagonalizable connectivity matrices and allowing arbitrary self-link weights. More importantly, our approach quantifies the relative synchronization specifically in terms of the contribution of process motif (walk) structures. We demonstrate that in general the relative abundance of process motifs with convergent directed walks (including feedback and feedforward loops) hinders synchronizability. We also reveal subtle differences between the motifs involved for discrete or continuous-time dynamics. Our insights analytically explain several known general results regarding synchronizability of networks, including that small-world and regular networks are less synchronizable than random networks.

4.
Front Aging Neurosci ; 15: 1120846, 2023.
Article in English | MEDLINE | ID: mdl-37293668

ABSTRACT

Introduction: Geometry-inspired notions of discrete Ricci curvature have been successfully used as markers of disrupted brain connectivity in neuropsychiatric disorders, but their ability to characterize age-related changes in functional connectivity is unexplored. Methods: We apply Forman-Ricci curvature and Ollivier-Ricci curvature to compare functional connectivity networks of healthy young and older subjects from the Max Planck Institute Leipzig Study for Mind-Body-Emotion Interactions (MPI-LEMON) dataset (N = 225). Results: We found that both Forman-Ricci curvature and Ollivier-Ricci curvature can capture whole-brain and region-level age-related differences in functional connectivity. Meta-analysis decoding demonstrated that those brain regions with age-related curvature differences were associated with cognitive domains known to manifest age-related changes-movement, affective processing, and somatosensory processing. Moreover, the curvature values of some brain regions showing age-related differences exhibited correlations with behavioral scores of affective processing. Finally, we found an overlap between brain regions showing age-related curvature differences and those brain regions whose non-invasive stimulation resulted in improved movement performance in older adults. Discussion: Our results suggest that both Forman-Ricci curvature and Ollivier-Ricci curvature correctly identify brain regions that are known to be functionally or clinically relevant. Our results add to a growing body of evidence demonstrating the sensitivity of discrete Ricci curvature measures to changes in the organization of functional connectivity networks, both in health and disease.

5.
Commun Chem ; 6(1): 87, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37130929

ABSTRACT

The periodic system encodes order and similarity among chemical elements arising from known substances at a given time that constitute the chemical space. Although the system has incorporated new elements, the connection with the remaining space is still to be analysed, which leads to the question of how the exponentially growing space has affected the periodic system. Here we show, by analysing the space between 1800 and 2021, that the system has converged towards its current stable structure through six stages, respectively characterised by the finding of elements (1800-1826), the emergence of the core structure of the system (1826-1860), its organic chemistry bias (1860-1900) and its further stabilisation (1900-1948), World War 2 new chemistry (1948-1980) and the system final stabilisation (1980-). Given the self-reinforced low diversity of the space and the limited chemical possibilities of the elements to be synthesised, we hypothesise that the periodic system will remain largely untouched.

6.
Entropy (Basel) ; 25(2)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36832688

ABSTRACT

A growing number of papers on style transfer for texts rely on information decomposition. The performance of the resulting systems is usually assessed empirically in terms of the output quality or requires laborious experiments. This paper suggests a straightforward information theoretical framework to assess the quality of information decomposition for latent representations in the context of style transfer. Experimenting with several state-of-the-art models, we demonstrate that such estimates could be used as a fast and straightforward health check for the models instead of more laborious empirical experiments.

7.
Sci Rep ; 13(1): 1441, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36697467

ABSTRACT

Social dilemmas are situations in which collective welfare is at odds with individual gain. One widely studied example, due to the conflict it poses between human behaviour and game theoretic reasoning, is the Traveler's Dilemma. The dilemma relies on the players' incentive to undercut their opponent at the expense of losing a collective high payoff. Such individual incentive leads players to a systematic mutual undercutting until the lowest possible payoff is reached, which is the game's unique Nash equilibrium. However, if players were satisfied with a high payoff -that is not necessarily higher than their opponent's- they would both be better off individually and collectively. Here, we explain how it is possible to converge to this cooperative high payoff equilibrium. Our analysis focuses on decomposing the dilemma into a local and a global game. We show that players need to escape the local maximisation and jump to the global game, in order to reach the cooperative equilibrium. Using a dynamic approach, based on evolutionary game theory and learning theory models, we find that diversity, understood as the presence of suboptimal strategies, is the general mechanism that enables the jump towards cooperation.


Subject(s)
Cooperative Behavior , Problem Solving , Humans , Game Theory , Biological Evolution , Records , Prisoner Dilemma
8.
J Comput Neurosci ; 51(1): 149-172, 2023 02.
Article in English | MEDLINE | ID: mdl-36280652

ABSTRACT

We investigate spontaneous critical dynamics of excitatory and inhibitory (EI) sparsely connected populations of spiking leaky integrate-and-fire neurons with conductance-based synapses. We use a bottom-up approach to derive a single neuron gain function and a linear Poisson neuron approximation which we use to study mean-field dynamics of the EI population and its bifurcations. In the low firing rate regime, the quiescent state loses stability due to saddle-node or Hopf bifurcations. In particular, at the Bogdanov-Takens (BT) bifurcation point which is the intersection of the Hopf bifurcation and the saddle-node bifurcation lines of the 2D dynamical system, the network shows avalanche dynamics with power-law avalanche size and duration distributions. This matches the characteristics of low firing spontaneous activity in the cortex. By linearizing gain functions and excitatory and inhibitory nullclines, we can approximate the location of the BT bifurcation point. This point in the control parameter phase space corresponds to the internal balance of excitation and inhibition and a slight excess of external excitatory input to the excitatory population. Due to the tight balance of average excitation and inhibition currents, the firing of the individual cells is fluctuation-driven. Around the BT point, the spiking of neurons is a Poisson process and the population average membrane potential of neurons is approximately at the middle of the operating interval [Formula: see text]. Moreover, the EI network is close to both oscillatory and active-inactive phase transition regimes.


Subject(s)
Avalanches , Models, Neurological , Neurons/physiology , Membrane Potentials/physiology , Synapses , Action Potentials/physiology
9.
Front Comput Neurosci ; 16: 910735, 2022.
Article in English | MEDLINE | ID: mdl-36299476

ABSTRACT

Dynamics of an interconnected population of excitatory and inhibitory spiking neurons wandering around a Bogdanov-Takens (BT) bifurcation point can generate the observed scale-free avalanches at the population level and the highly variable spike patterns of individual neurons. These characteristics match experimental findings for spontaneous intrinsic activity in the brain. In this paper, we address the mechanisms causing the system to get and remain near this BT point. We propose an effective stochastic neural field model which captures the dynamics of the mean-field model. We show how the network tunes itself through local long-term synaptic plasticity by STDP and short-term synaptic depression to be close to this bifurcation point. The mesoscopic model that we derive matches the directed percolation model at the absorbing state phase transition.

10.
Proc Natl Acad Sci U S A ; 119(30): e2119083119, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35867818

ABSTRACT

The periodic system, which intertwines order and similarity among chemical elements, arose from knowledge about substances constituting the chemical space. Little is known, however, about how the expansion of the space contributed to the emergence of the system-formulated in the 1860s. Here, we show by analyzing the space between 1800 and 1869 that after an unstable period culminating around 1826, chemical space led the system to converge to a backbone structure clearly recognizable in the 1840s. Hence, the system was already encoded in the space for about two and half decades before its formulation. Chemical events in 1826 and in the 1840s were driven by the discovery of new forms of combination standing the test of time. Emphasis of the space upon organic chemicals after 1830 prompted the recognition of relationships among elements participating in the organic turn and obscured some of the relationships among transition metals. To account for the role of nineteenth century atomic weights upon the system, we introduced an algorithm to adjust the space according to different sets of weights, which allowed for estimating the resulting periodic systems of chemists using one or the other weights. By analyzing these systems, from Dalton up to Mendeleev, Gmelin's atomic weights of 1843 produce systems remarkably similar to that of 1869, a similarity that was reinforced by the atomic weights on the years to come. Although our approach is computational rather than historical, we hope it can complement other tools of the history of chemistry.

11.
Sci Rep ; 12(1): 8295, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35585156

ABSTRACT

While standard graph-theoretic measures have been widely used to characterize atypical resting-state functional connectivity in autism spectrum disorder (ASD), geometry-inspired network measures have not been applied. In this study, we apply Forman-Ricci and Ollivier-Ricci curvatures to compare networks of ASD and typically developing individuals (N = 1112) from the Autism Brain Imaging Data Exchange I (ABIDE-I) dataset. We find brain-wide and region-specific ASD-related differences for both Forman-Ricci and Ollivier-Ricci curvatures, with region-specific differences concentrated in Default Mode, Somatomotor and Ventral Attention networks for Forman-Ricci curvature. We use meta-analysis decoding to demonstrate that brain regions with curvature differences are associated to those cognitive domains known to be impaired in ASD. Further, we show that brain regions with curvature differences overlap with those brain regions whose non-invasive stimulation improves ASD-related symptoms. These results suggest the utility of graph Ricci curvatures in characterizing atypical connectivity of clinically relevant regions in ASD and other neurodevelopmental disorders.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Autism Spectrum Disorder/diagnostic imaging , Brain/diagnostic imaging , Brain Mapping/methods , Humans , Magnetic Resonance Imaging/methods , Neural Pathways
12.
Theory Biosci ; 141(2): 65-71, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34117616

ABSTRACT

The main thesis developed in this article is that the key feature of biological life is the a biological process can control and regulate other processes, and it maintains that ability over time. This control can happen hierarchically and/or reciprocally, and it takes place in three-dimensional space. This implies that the information that a biological process has to utilize is only about the control, but not about the content of those processes. Those other processes can be vastly more complex that the controlling process itself, and in fact necessarily so. In particular, each biological process draws upon the complexity of its environment.


Subject(s)
Biology , Time
13.
Sci Total Environ ; 818: 151682, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-34793786

ABSTRACT

Exposure to environmental chemicals during early childhood is a potential health concern. At a tender age, children are exposed to fragrance chemicals used in toys and child care products. Although there are few initiatives in Europe and United States towards monitoring and regulation of fragrance chemicals in children's products, such efforts are still lacking elsewhere. Besides there has been no systematic effort to create a database compiling the surrounding knowledge on fragrance chemicals used in children's products from published literature. Here, we built a database of Fragrance Chemicals in Children's Products (FCCP) that compiles information on 153 fragrance chemicals from published literature. The fragrance chemicals in FCCP have been classified based on their chemical structure, children's product source, chemical origin and odor profile. Moreover, we have also compiled the physicochemical properties, predicted Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) properties, molecular descriptors and human target genes for the fragrance chemicals in FCCP. After building FCCP, we performed multiple analyses of the associated fragrance chemical space. Firstly, we assessed the regulatory status of the fragrance chemicals in FCCP through a comparative analysis with 21 chemical lists reflecting current guidelines or regulations. We find that several fragrance chemicals in children's products are potential carcinogens, endocrine disruptors, neurotoxicants, phytotoxins and skin sensitizers. Secondly, we performed a similarity network based analysis of the fragrance chemicals in children's products to reveal the high structural diversity of the associated chemical space. Lastly, we identified skin sensitizing fragrance chemicals in children's products using ToxCast assays. In a nutshell, we present a comprehensive resource and detailed analysis of fragrance chemicals in children's products highlighting the need for their better risk assessment and regulation to deliver safer products for children. FCCP is accessible at: https://cb.imsc.res.in/fccp.


Subject(s)
Endocrine Disruptors , Perfume , Child, Preschool , Endocrine Disruptors/toxicity , Humans , Odorants , Play and Playthings , Risk Assessment , United States
14.
R Soc Open Sci ; 8(2): 201734, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33972862

ABSTRACT

The complexity of financial markets arise from the strategic interactions among agents trading stocks, which manifest in the form of vibrant correlation patterns among stock prices. Over the past few decades, complex financial markets have often been represented as networks whose interacting pairs of nodes are stocks, connected by edges that signify the correlation strengths. However, we often have interactions that occur in groups of three or more nodes, and these cannot be described simply by pairwise interactions but we also need to take the relations between these interactions into account. Only recently, researchers have started devoting attention to the higher-order architecture of complex financial systems, that can significantly enhance our ability to estimate systemic risk as well as measure the robustness of financial systems in terms of market efficiency. Geometry-inspired network measures, such as the Ollivier-Ricci curvature and Forman-Ricci curvature, can be used to capture the network fragility and continuously monitor financial dynamics. Here, we explore the utility of such discrete Ricci curvatures in characterizing the structure of financial systems, and further, evaluate them as generic indicators of the market instability. For this purpose, we examine the daily returns from a set of stocks comprising the USA S&P-500 and the Japanese Nikkei-225 over a 32-year period, and monitor the changes in the edge-centric network curvatures. We find that the different geometric measures capture well the system-level features of the market and hence we can distinguish between the normal or 'business-as-usual' periods and all the major market crashes. This can be very useful in strategic designing of financial systems and regulating the markets in order to tackle financial instabilities.

15.
Sci Rep ; 10(1): 21348, 2020 12 07.
Article in English | MEDLINE | ID: mdl-33288824

ABSTRACT

Despite the growing interest in characterizing the local geometry leading to the global topology of networks, our understanding of the local structure of complex networks, especially real-world networks, is still incomplete. Here, we analyze a simple, elegant yet underexplored measure, 'degree difference' (DD) between vertices of an edge, to understand the local network geometry. We describe the connection between DD and global assortativity of the network from both formal and conceptual perspective, and show that DD can reveal structural properties that are not obtained from other such measures in network science. Typically, edges with different DD play different structural roles and the DD distribution is an important network signature. Notably, DD is the basic unit of assortativity. We provide an explanation as to why DD can characterize structural heterogeneity in mixing patterns unlike global assortativity and local node assortativity. By analyzing synthetic and real networks, we show that DD distribution can be used to distinguish between different types of networks including those networks that cannot be easily distinguished using degree sequence and global assortativity. Moreover, we show DD to be an indicator for topological robustness of scale-free networks. Overall, DD is a local measure that is simple to define, easy to evaluate, and that reveals structural properties of networks not readily seen from other measures.

16.
Entropy (Basel) ; 22(6)2020 Jun 08.
Article in English | MEDLINE | ID: mdl-33286409

ABSTRACT

The Jordan product on the self-adjoint part of a finite-dimensional C * -algebra A is shown to give rise to Riemannian metric tensors on suitable manifolds of states on A , and the covariant derivative, the geodesics, the Riemann tensor, and the sectional curvature of all these metric tensors are explicitly computed. In particular, it is proved that the Fisher-Rao metric tensor is recovered in the Abelian case, that the Fubini-Study metric tensor is recovered when we consider pure states on the algebra B ( H ) of linear operators on a finite-dimensional Hilbert space H , and that the Bures-Helstrom metric tensors is recovered when we consider faithful states on B ( H ) . Moreover, an alternative derivation of these Riemannian metric tensors in terms of the GNS construction associated to a state is presented. In the case of pure and faithful states on B ( H ) , this alternative geometrical description clarifies the analogy between the Fubini-Study and the Bures-Helstrom metric tensor.

17.
Entropy (Basel) ; 22(11)2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33266515

ABSTRACT

A geometrical formulation of estimation theory for finite-dimensional C∗-algebras is presented. This formulation allows to deal with the classical and quantum case in a single, unifying mathematical framework. The derivation of the Cramer-Rao and Helstrom bounds for parametric statistical models with discrete and finite outcome spaces is presented.

18.
Theory Biosci ; 139(4): 361-370, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33211276

ABSTRACT

In computer science, we can theoretically neatly separate transmission and processing of information, hardware and software, and programs and their inputs. This is much more intricate in biology. Nevertheless, I argue that Shannon's concept of information is useful in biology, although its application is not as straightforward as many people think. In fact, the recently developed theory of information decomposition can shed much light on the complementarity between coding and regulatory, or internal and environmental information. The key challenge that we formulate in this contribution is to understand how genetic information and external factors combine to create an organism, and conversely how the genome has learned in the course of evolution how to harness the environment, and analogously how coding, regulation and spatial organization interact in cellular processes.


Subject(s)
Genome , Software , Humans , Learning
19.
Theory Biosci ; 139(4): 337-348, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33216293

ABSTRACT

The relations, rather than the elements, constitute the structure of networks. We therefore develop a systematic approach to the analysis of networks, modelled as graphs or hypergraphs, that is based on structural properties of (hyper)edges, instead of vertices. For that purpose, we utilize so-called network curvatures. These curvatures quantify the local structural properties of (hyper)edges, that is, how, and how well, they are connected to others. In the case of directed networks, they assess the input they receive and the output they produce, and relations between them. With those tools, we can investigate biological networks. As examples, we apply our methods here to protein-protein interaction, transcriptional regulatory and metabolic networks.


Subject(s)
Gene Expression Regulation , Metabolic Networks and Pathways
20.
Phys Rev E ; 101(6-1): 062313, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32688515

ABSTRACT

In the study of dynamical systems on networks or graphs, a key theme is how the network topology influences stability for steady states or synchronized states. Ideally, one would like to derive conditions for stability or instability that, instead of microscopic details of the individual nodes or vertices, rather make the influence of the network coupling topology visible. The master stability function is an important such tool to achieve this goal. Here, we generalize the master stability approach to hypergraphs. A hypergraph coupling structure is important as it allows us to take into account arbitrary higher-order interactions between nodes. As, for instance, in the theory of coupled map lattices, we study Laplace-type interaction structures in detail. Since the spectral theory of Laplacians on hypergraphs is richer than on graphs, we see the possibility of different dynamical phenomena. More generally, our arguments provide a blueprint for how to generalize dynamical structures and results from graphs to hypergraphs.

SELECTION OF CITATIONS
SEARCH DETAIL
...